
ILA-9232-T Thesis

CIC-14 REPORT COLLECTION
REPRODUCTION
COPY

F Los Alamos National Laboratory is operated by the University of California for the United States Department of Energy under contract W-7405-ENG-36.

Final Dimensional Cross-Section Final With and Uncertainty Analysis Fig. Eusion Reactor Blankets

LOS Alamos National Laboratory Los Alamos, New Mexico 87545

This thesis was accepted by the Virginia Polytechnic Institute and State University, Blacksburg, Virginia, Department of Nuclear Science and Engineering, in partial fulfillment of the requirements for the degree of Doctor of Philosophy. It is the independent work of the author and has not been edited by the Technical Information staff.

This work was supported by the US Department of Energy, Office of Fusion Energy, and Associated Western Universities, Salt Lake City, Utah.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. References herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

LA-9232-T Thesis

UC-20d Issued: February 1982

Two-Dimensional Cross-Section Sensitivity and Uncertainty Analysis For Fusion Reactor Blankets

Mark Julien Embrechts

LOS Alamos National Laboratory Los Alamos, New Mexico 87545

CONTENTS

Nome	enclat	ture	viii
List	of	Figure	es x
List	of	Tables	s xi
Abst	ract	• • • • • •	xiv
1.	Intro	oduction	ı 1
	1.1	Motivat	tion 2
	1.2	Literat	ture Review 4
2.	Sens	itivity	Theory 7
	2.1	Definit	tions 8
		2.1.1	Cross-section sensitivity function, cross-section
			sensitivity profile and integral cross-section sen
			sitivity 8
		2.1.2	Vector cross section 9
		2.1.3	Geometry related terminology10
	2.2	Cross-	Section Sensitivity Profiles12
		2.2.1	Introduction
		2.2.2	Analytical expression for the cross-section sen-
			sitivity profile14
		2.2.3	Explicit expression for the cross-section sensi-
			tivity profile in discrete ordinates for a two-
			dimensional geometry representation20
	2 2	Source	and Detector Sensitivity Profiles

	2.4	Sensiti	vity Profiles for the Secondary Energy Distribution
		and the	e Secondary Angular Distribution
		2.4.1	Introduction
		2.4.2	Further theoretical development40
		2.4.3	Secondary energy and secondary angular distribution
			sensitivity profile43
		2.4.4	Integral sensitivities for SEDs and SADs44
		2.4.5	Explicit expressions for integral SED sensitivity
			profiles in a two-dimensional geometry
			representation47
	2.5	Design	Sensitivity Analysis48
3.	Appl	ication	of Sensitivity Theory to Uncertainty Analysis52
	3.1	Defini	tions52
	3.2	Cross-	Section Covariance Matrices54
	3.3	Applic	ation of Cross-Section Sensitivity Profiles and Cross-
		Sectio	n Covariance Matrices to Predict Uncertainties55
	3.4	Second	ary Energy Distribution Uncertainty Analysis57
	3.5	Overal	1 Response Uncertainty62
4.	SENS	SIT-2D:	A Two-Dimensional Cross-Section Sensitivity and
	Unce	ertainty	Analysis Code64
	4.1	Introd	luction64
	4.2	Comput	ational Outline of a Sensitivity Study66
		4.2.1	Cross-section preparation module70
		4.2.2	The TRIDENT-CTR and TRDSEN block71
		4.2.3	The SENSIT-2D module71

	4.3	The SEN	ISIT-2D Code
		4.3.1	Flow charts
		4.3.2	Subroutines used in SENSIT-2D78
5.	Compa	arison c	of a Two-Dimensional Sensitivity Anlysis with a
	One-I	Dimensio	onal Sensitivity Analysis83
	5.1	Sample	Problem #184
		5.1.1	TRIDENT-CTR and ONEDANT results92
		5.1.2	SENSIT and SENSIT-2D results for a standard cross-
			section sensitivity analysis94
		5.1.3	Comparison between a two-dimensional and a one-
			dimensional cross-section sensitivity and
			uncertainty analysis99
	5.2	Sample	Problem #2104
		5.2.1	Influence of the quadrature order on the sensi-
			tivity profile104
		5.2.2	Comparison between the two-dimensional and one-
			dimensional analysis of sample problem #2111
		5.2.3	Comparison between the χ 's calculated from the
			angular fluxes and the $\chi{}^{\mbox{\scriptsize '}}s$ resulting from flux
			moments114
		5.2.4	Evaluation of the loss term based on flux moments
			in the case of low c116
	5.3	Conclu	sions117
6.	Sens	itivity	and Uncertainty Analysis of the Heating in the
	TF-C	oil for	the FED118

	6.1	Two-Dimensional Model for the FED11	8
	6.2	Two-Dimensional Sensitivity and Uncertainty Analysis for	
		the Heating in the TF-Coil due to SED and Cross-Section	
		Uncertainties12	23
	6.3	Comparison of the Two-Dimensional Model with a One-	
		Dimensional representation12	29
7.	Conc	lusions and Recommendations13	33
8.	Refe	rences	38
App	endix	A: SENSIT-2D Source and Code Listing	46
App	endix	B: TRIDSEN	90

NOMENCLATURE

E	reflects energy function
$\underline{\Omega}$	reflects angular distribution
σ	microscopic cross section
Σχ	macroscopic cross section, where x indicates the
	material and/or the type of cross section
Σ _{x,s}	macroscopic scattering cross section for material x
$\Sigma_{x,T}$	total cross section for material x
ф	angular flus
Ф т	angular flux in discrete ordinates representation
$\Phi_{\boldsymbol{\ell}}^{\mathbf{k}}$	spherical harmonics representation for the angular
-	flux
$R_{\mathcal{Q}}^{\mathbf{k}}$	spherical harmonics function
P ₂	Legendre polynomials
$P_{\boldsymbol{\ell}}^{\mathbf{k}}$	associated Legendre polynomials
L	transport operator
L*	adjoint transport operator
Q	source
R	response function
1	integral response
v	volume
F	fractional uncertainty for the secondary angular
	distribution
x	part of the loss term in the sensitivity profile
Ψ	part of the gain term in the sensitivity profile

LIST OF FIGURES

Figure 1	Illustration of the terminology: blank region,
	source region and detector region
Figure 2a	Coordinates in x-y geometry
Figure 2b	Coordinates in r-z geometry
Figure 3	Definition of median energy and integral SED
	sensitivity
Figure 4	Interpretation of the integral SED uncertainty
	as spectral shape perturbations and definitions
	of the spectral shape uncertainty parameter "f"
Figure 5	Computational outline for a two-dimensional sen-
	sitivity and uncertainty analysis with SENSIT-2D
Figure 6	Data flow for the SENSIT-2D module
Figure 7	Flow chart for SENSIT-2D
Figure 8	Cylindrical geometry representation for sample
	problem #1
Figure 9	Two-dimensional (TRIDENT-CTR) representation
	for sample problem #1
Figure 10	One-dimensional (ONEDANT) representation for
	sample problem #1
Figure 11	Two-dimensional model for sample problem #2
Figure 12	Two-dimensional model for the FED
Figure 13	The TRIDENT-CTR band and triangle structure
	for the FED

LIST OF TABLES

	LIST OF TABLES
Table I	Formulas for the sensitivity function
Table II	Median Energies (E_{m}^{\prime} , in MeV) and fractional
	uncertainties (F) for secondary energy distributions
	at incident neutron energies E ₀
Table III	Summary of the features of SENSIT-2D
Table IV	List of subroutines used in SENSIT-2D
Table V	30-group energy structure
Table VI	Atom densities of materials
Table VIIa	Comparison of the heating in the copper region
	calculated by ONEDANT and TRIDENT-CTR
Table VIIb	Computing times on a CDC-7600 machine
Table VIIIa	Comparison of the heating in the copper region
	calculated by ONEDANT and TRIDENT-CTR
Table VIIIb	Partial and net sensitivity profiles for the
	two-dimensional analysis
Table IX	Comparison between the χ 's calculated from
	angular fluxes and flux moments
Table Xa	Predicted response uncertainties due to estimated
	cross-section and SED uncertainties in a one-
	dimensional analysis
Table Xb	Predicted response uncertainites due to estimated
	cross-section and SED uncertainties in a two-
	dimensional analysis

Table XI Cross section table used in sample problem #2

(the P-0, P-1, P-2, and P-3 tables are identical)

Table XII Integral response for sample problem #2

Table XIIIa Standard cross-section sensitivity profiles calculated by SENSIT-2D for the EQ-6 case (convergence precision 0.0001, 4 triangles per zone) for sample problem #2

Table IIIb Standard cross-section sensitivity profiles calculated by SENSIT-2D for the EQ-12 case (convergence precision 0.001, 4 triangles per zone) for sample problem #2

Table XIVa Standard cross-section sensitivity profiles calculated by SENSIT for the S-12 case (convergence
precision 0.0001, 4 intervals per zone) for sample
problem #2

Table XIVb Standard cross-section sensitivity profiles calculated by SENSIT for the S-32 case (convergence
precision 0.0001, 8 intervals per zone) for sample
problem #2

Table XIVc Standard cross-section sensitivity profiles calculated by SENSIT-2D for the EQ-12 case (convergence precision 0.0001) for sample problem #2

Table XV Comparison between the χ 's calculates from angular fluxes and the χ 's calculated for flux moments

Table XVI Atom densities for the isotopes used in the materials

Table XVII Predicted Uncertainties (standard deviation) due to estimated SED and cross-section uncertainties for the heating of the TF-coil

Table XVIII Predicted SED and cross-section uncertainties in the TF-coil due to uncertainties in the SS316 regions

Table XIX Comparison between the χ 's calculated from angular fluxes and the χ 's resulting from flux moments for region 11 (SS316)

Table XX Predicted uncertainties (standard deviation) due to estimated SED and cross-section uncertainties in regions 1 and 3 for the heating in the TF-coil.

TWO-DIMENSIONAL CROSS-SECTION SENSITIVITY AND UNCERTAINTY ANALYSIS FOR FUSION REACTOR BLANKETS

by

Mark Julien Embrechts

ABSTRACT

Sensitivity and uncertainty analysis implement the information obtained from a transport code by providing a reasonable estimate for the uncertainty for a particular response (e.g., tritium breeding), and by the ability to better understand the nucleonics involved. The doughnut shape of many fusion devices makes a two-dimensional calculation capability highly desirable. Based on first-order generalized perturbation theory, expressions for a two-dimensional SED (secondary energy distribution) and cross-section sensitivity and uncertainty analysis were developed for x-y and r-z geometry. This theory was implemented by developing a two-dimensional sensitivity and uncertainty analysis code, SENSIT-2D. SENSIT-2D has a design capability and has the option to calculate sensitivities and uncertainties with respect to the response function itself. SENSIT-2D can only interact with the TRIDENT-CTR code.

A rigorous comparison between a one-dimensional and a two-dimensional analysis for a problem which is one-dimensional from the neutronics point of view, indicates that SENSIT-2D performs as intended.

A two-dimensional sensitivity and uncertainty analysis for the heating of the TF coil for the FED (fusion engineering device) blanket was performed. The uncertainties calculated are of the same order of magnitude as those resulting from a one-dimensional analysis. The largest uncertainties were caused by the cross section uncertainties for chromium.

INTRODUCTION TO SENSITIVITY THEORY AND UNCERTAINTY ANALYSIS

In a time characterized by a continuously growing demand for sophisticated technology it should not be surprising that the production
of fusion energy might materialize more rapidly than commonly predicted.
With fusion devices going into a demonstration phase there is a need for
sophisticated nucleonics methods, tailored to the fusion community. In
a relatively short time frame fusion nucleonics has established itself
as a more or less mature subfield. In this context sensitivity theory
has become a widely applied concept which provides the reactor designer
with a deeper understanding of the information obtained from transport
calculations.

Under the term sensitivity theory usually algorithms based upon classical perturbation and variational theory are understood. The scope of this work will be limited to cross-section and design sensitivity analysis with respect to fusion reactors. Since fusion nucleonics do not involve eigenvalue calculations, the mathematical concepts utilized will be simpler than those required by the fission community.

Sensitivity theory determines how a design quantity changes when one or more of the design parameters are altered. Uncertainty analysis

provides the error range on a design quantity due to errors on the design parameters. Sensitivity information can easily be incorporated into an uncertainty analysis by introducing covariance matrices.

Cross-section sensitivity and uncertainty analysis will give error estimates of response functions (such as tritium breeding ratio, heating and material damage) due to uncertainties in the cross-section data. Such a study will reveal which partial cross sections and in what energy range contribute most to the error and will recommend refinements on cross-section evaluations in order to reduce that error. Although those results will depend on the particular response and the particular design, general conclusions can still be drawn for a class of similar designs. Sensitivity theory is a powerful design tool and is commonly applied to cross-section adjustment procedures. Design sensitivity analysis is frequently used to reduce the many and expensive computer runs required during the development of a new reactor concept.

1.1 Motivation

The purpose of this work is to assess the state of the art of sensitivity and uncertainty analysis with respect to fusion nucleonics, fill existing gaps in that field and suggest areas which deserve further attention.

At this moment the literature about sensitivity theory is scattered between various journal articles and technical reports. Therefore, the

author considered it as one of his responsibilities to provide a consistent monograph which explains, starting from the transport equation, how analytical and explicit expressions for various sensitivity profiles can be obtained. Current limitations with respect to the applicability of sensitivity theory are pointed out and the application of sensitivity theory to uncertainty analysis is explained. At the same time the scope has been kept limited to those algorithms which are presently used in calculation schemes.

Due to the particular geometry of fusion devices (toroidal geometry, non-symmetric plasma shape, etc.), a one-dimensional transport code (and therefore a one-dimensional sensitivity analysis) will generally be inadequate. In order to mock-up a fusion reactor more closely, a two-dimensional analysis is required. Although a two-dimensional sensitivity code - VIP^{4,5} - already exists, VIP was developed with a fission reactor in mind, and does not include an r-z geometry option, nor a secondary energy distribution capability. To answer the needs of the fusion community, a two-dimensional sensitivity and uncertainty analysis code, SENSIT-2D, has been written.

A sensitivity code uses the regular and adjoint fluxes of a neutron transport code in order to construct sensitivity profiles. SENSIT-2D requires angular fluxes generated by TRIDENT-CTR.^{6,7} TRIDENT-CTR is a two-dimensional discrete-ordinates neutron transport code specially developed for the fusion community. Since SENSIT-2D incorporates the essential features of TRIDENT-CTR, i.e., triangular meshes and r-z geometry option, toroidal devices can be modeled quite accurately. SENSIT-

2D has the capability of group-dependent quadrature sets and includes the option of a secondary energy distribution (SED) sensitivity and uncertainty analysis. An option to calculate the loss term of the cross-section sensitivity profile based on either flux moments or angular fluxes is built into SENSIT-2D. The question whether a third-order spherical harmonics expansion of the angular flux will be adequate for a 2-D sensitivity analysis has not yet been adequately answered. The flux moment/angular flux option will help provide an answer to that question.

As an application of the SENSIT-2D code, a two-dimensional sensitivity and uncertaintly analysis of the inboard shield for the FED (fusion engineering device), currently in a preconceptual design stage by the General Atomic Company, was performed.

1.2 Literature Review

The roots of cross-section sensitivity theory can be traced to the work of Prezbindowski. 9,10 The first widely used cross-section sensitivity code, SWANLAKE, 11 was developed at ORNL (Oak Ridge National Laboratory). In order to include the evaluation of the sensitivity of the response to the response function, SWANLAKE was modified to SWANLAKE-UW by Wu and Maynard. 77 Already early in its history, sensitivity theory was applied to fusion reactor studies. 12-16 It has now become a common practice to include a sensitivity study in fusion neutronics. 17-23,54

The mathematical concepts behind sensitivity theory are based on variational and perturbation theory. 24-29 The application of sensitivity profiles to uncertaintly analysis was restricted not due to a lack of adequate mathematical formulations, but due to the lack of cross-section covariance data. An extensive effort to include standardized covariance data into ENDF/B files has recently been made. 30-34

The theory of design sensitivity analysis can be traced to the work of Conn, Stacey, and Gerstl. 14,26,35,40 The current limitation of design sensitivity analysis is related to the fact that the integral response is exact up to the second order with respect to the fluxes, but only exact to the first order with respect to design changes. Therefore, only relatively small design changes are allowed. The utilization of Padé approximants 42 might prove to be a valuable alternative to higher-order perturbation theory, but has not yet been applied to design sensitivity analysis. 63

The two-dimensional sensitivity code VIP^{4,5} was developed by Childs. VIP is oriented towards fission reactors and does not include a design sensitivity option, nor a secondary energy distribution capability.

The theory of secondary energy distribution (SED) and secondary angular distribution (SAD) sensitivity and uncertainty analysis was originated by $Gerst1^{43-45}$ and is incorporated into the SENSIT⁴⁶ code. The $FORSS^{47}$ code package has been applied mainly to fast reactor studies 48,49 but can be applied to fusion reactor designs as well. Higher-order sensitivity theory $^{42,50-51,78}$ still seems to be too impractical to

be readily applied. Recently however, the French developed a code system, SAMPO, 52 which includes some higher-order sensitivity analysis capability.

SENSITIVITY THEORY

In this chapter the theory behind source and detector sensitivity, cross-section and secondary energy distribution (SED) sensitivity, and design sensitivity analysis will be explained. Starting from the transport equation, expressions for the corresponding sensitivity profiles will be derived. Those formulas will then be made more explicit and applied to a two-dimensional geometry. The theory presented in this and the following chapter is merely a consistent combination and reconstruction of several papers and reports. 3,13,16,17,18,43-46,53

Since up to this time no single reference work about the various concepts used in sensitivity and uncertainty analysis has been published, the author uses the most commonly referred to terminology. In an attempt to present an overview with the emphasis on internal consistency, there might be some minor conflicts with the terminology used in earlier published papers.

2.1 Definitions

2.1.1 Cross-section sensitivity function, cross-section sensitivity profile and integral cross-section sensitivity

Let I represent a design quantity (such as a reaction rate, e.g., the tritium breeding ratio), depending on a cross-section set and the angular fluxes. The cross-section sensitivity function for a particular cross section $\Sigma_{\mathbf{x}}$ at energy E, $F_{\Sigma_{\mathbf{x}}}$ (E), is defined as the fractional change of the design parameter of interest per unit fractional change of cross section $\Sigma_{\mathbf{x}}$, or

$$F_{\Sigma_{\mathbf{x}}}(E) = \frac{\partial I/I}{\partial \Sigma_{\mathbf{x}}/\Sigma_{\mathbf{x}}} . \tag{1}$$

In a multigroup formulation the usual preference is to work with a sensitivity profile P_{X}^{g} , which is defined by

$$P_{\Sigma_{\mathbf{X}}}^{\mathbf{g}} = \frac{\partial I/I}{\partial \Sigma_{\mathbf{Y}}^{\mathbf{g}}/\Sigma_{\mathbf{X}}^{\mathbf{g}}} \cdot \frac{1}{\Delta u^{\mathbf{g}}}, \qquad (2)$$

where Δu^g is the lethargy width of group g and Σ_X^g is the multigroup cross section for group g. The sum over all the groups of the sensitivity profiles for a particular group cross section Σ_X^g , multiplied by

the corresponding lethargy widths, is called the <u>integral cross-section</u> sensitivity for cross section Σ_x , or

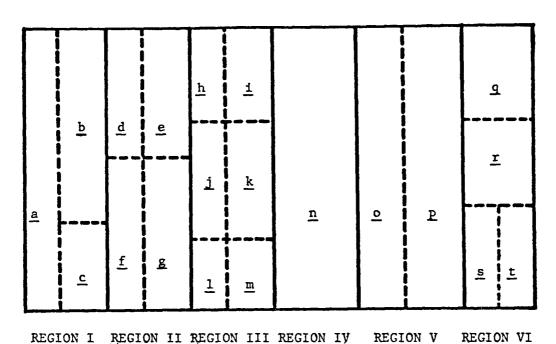
$$S_{\sum_{\mathbf{X}}} = \sum_{\mathbf{g}} P_{\sum_{\mathbf{X}}}^{\mathbf{g}} \cdot \Delta u^{\mathbf{g}} ,$$

$$= \int d\mathbf{E} F_{\sum_{\mathbf{X}}}(\mathbf{E}) . \qquad (3)$$

The integral cross-section sensitivity can be interpreted as the percentage change of the design parameter of interest, I, resulting from a simultaneous one percent increase of the group cross sections $\Sigma_{\mathbf{x}}^{\mathbf{g}}$ in all energy groups g.

2.1.2 Vector cross section

The term "vector cross section" describes a multigroup partial cross-section set with one group-averaged reaction cross section for each group. Such a cross-section set can be described by a vector with GMAX elements, where GMAX is the number of energy groups. The term vector cross section was introduced by Gerstl to discriminate it from the matrix representation of a multigroup cross-section set. Differential scattering cross sections can obviously not be described in the form of a vector cross section.


2.1.3 Geometry related terminology

Under the term region we will understand a collection of one or more zones. A zone will always describe a homogeneous part of the reactor. We will make a distinction between source regions, detector regions and perturbed regions, and as a consequence between source, detector and perturbed zones. We will introduce the term blank region for a region that is neither a detector, source or perturbed region. A zone will further be divided into intervals.

The source region will describe that part of the reactor which contains a volumetric source. The detector region indicates the part of the reactor for which an integral response is desired. In the perturbed region changes in one or more cross sections can be made.

A source or a detector regions can contain more than one zone, and each zone can be made up of a different material. Due to the mathematical formulations a perturbed region can still contain more than one zone, but in this case all the zones have to contain identical materials. If there is more than one perturbed region, all those regions should contain the same materials.

The geometry-related terminology is illustrated in Fig. 1. In this case, there are six regions; a source region, two perturbed regions, one detector region and two blank regions. The source region contains three zones (identified by \underline{a} , \underline{b} , and \underline{c}). The first zone, \underline{a} , is a vacuum, while the other two zones are made up of iron. Note that both perturbed regions satisfy the requirement that the zones in these regions contain

REGION I REGION II REGION IV REGION V REGION VI Source Blank Perturbed Blank Perturbed Detector Region Region Region Region Region

MATERIALS	ZONES
vacuum iron copper copper + iron beryllium	<u>a,e,f</u> <u>b,c,n,o,p,h,i,j,k,l,m</u> <u>q,r</u> <u>s,t</u> <u>d,g</u>

Figure 1. Illustration of the terminology: blank region, source region, perturbed region and detector region

identical materials. This requirement does not have to be met for source and detector regions.

2.2 Cross-Section Sensitivity Profiles

2.2.1 Introduction

Perturbation theory is most commonly applied in order to derive analytical expressions for the cross-section sensitivity profile. We therefore will follow in this work Oblow's approach. 11,25 Based on the analytical expression, an explicit formula for the cross-section sensitivity profile in discrete ordinates form for a two-dimensional geometry will then be derived.

During the last few years there has been a trend towards using generalized perturbation theory for sensitivity studies. 5,55,61 Generalized perturbation theory has the advantage that it can readily be applied to derive expressions for the ratio of bilinear functionals and that it can be used to study nonlinear systems. 59,60 Also, higher-order expressions, based on generalized perturbation theory, have been derived. 57,58,61

The differential approach is closely related to generalized perturbation theory and has been applied to cross-section sensitivity analysis by Oblow. A more rigorous formulation of the differential approach was made by Dubi and Dudziak. 50,51 Although higher-order expressions

for cross-section sensitivity profiles can be derived, 50,51 the practicality of its application has not yet been proved. 50,51,78

The evaluation of a sensitivity profile will generally require the solution of a direct and an adjoint problem. Such a system carries more information than the forward equation and it is therefore not surprising that this extra amount of information can be made explicit (e.g., through sensitivity profiles).

The higher-order expressions for the cross-section sensitivity profiles derived by Dubi and Dudziak involve the use of Green's functions. 50,51 The Green's function - if properly integrated - allows one to gain all possible information for a particular transport problem. It therefore can be expected that higher-order sensitivity profiles can be calculated up to an arbitrary high order by evaluating one Green's function. For most cases, the derivation of the Green's function is extremely complicated, if not impossible. It therefore can be argued that the Green's function carries such a tremendous amount of information that it is not surprising that higher-order expressions for the sensitivity profile can be obtained, and that while the use of Green's functions can prove to be very valuable for gaining analytical and physical insight, they will not be practical as a basis for numerical evaluations.

From the study done by Wu and Maynard, ⁷⁸ it can be concluded that a first-order expression allows for a 40% perturbation in the cross sections (or rather the mean free path) and will still yield a reasonably accurate integral response (less than 10% error). Larger perturbations give rapidly increasing errors (the error increases roughly by a power

of three). Expressions exact up to the second order allow a 65% perturbation, and a sixth-order expression allows a 190% perturbation, both for an error less than 10%. Also, for higher-order approximations, if was found that the error on the integral response will increase drastically once the error exceeds 10%. It can be concluded therefore that the higher-order expressions do not bring a tremendous improvement over the first-order approximation (unless very high orders are used), while the computational effort increases drastically. Higher-order sensitivity analysis can only become practical when extremely simple expressions for the sensitivity profiles can be obtained, or when a suitable approximation for Green's functions can be found. 79

2.2.2 Analytical expression for the cross-section sensitivity profile

Consider the regular and adjoint transport equations

$$L.\Phi = Q \quad , \tag{4}$$

and

$$L^{*}.\Phi^{*} = R \quad , \tag{5}$$

where Φ and Φ^* represent the forward and the adjoint angular fluxes, L and L are the forward and adjoint transport operator, Q is the source,

and R is the detector response function. The integral response, I, can then be written as

$$I = \langle R, \phi \rangle \tag{6}$$

or

$$I^{*} = \langle Q, \Phi^{*} \rangle , \qquad (7)$$

where the symbol <, > means the inner product, i.e., the integral over the phase space. In a fully converged calculation I^* will be equal to I. For the perturbed system, similar expressions can be obtained:

$$L_{p}\Phi_{p}=Q \quad , \tag{8}$$

$$L_{\mathbf{p}}^{\star} \dot{\Phi}_{\mathbf{p}}^{\star} = R \quad , \tag{9}$$

$$I_{p} = \langle R, \Phi_{p} \rangle , \qquad (10)$$

and
$$I_{p}^{*} = \langle Q, \phi_{p}^{*} \rangle$$
 , (11)

where

$$\Phi_{p} = \Phi + \delta\Phi \quad , \tag{12}$$

$$\Phi_{\mathbf{p}}^{*} = \Phi^{*} + \delta\Phi^{*} \quad , \tag{13}$$

and
$$I_p = I + \delta I$$
 . (14)

From Eqs. (9), (13), and (5) we have

$$L_{\mathbf{p}}^{\star}.\delta\Phi^{\star} = (L^{\star} - L_{\mathbf{p}}^{\star}).\Phi^{\star} . \tag{15}$$

Further, we have from Eqs. (14), (11), (6), (12), and (9)

$$\delta I = I_{p} - I ,$$

$$= \langle R, \phi_{p} - \phi \rangle ,$$

$$= \langle R, \delta \phi \rangle ,$$

or
$$\delta I = \langle L_p^{\dagger} \phi_p^{\dagger}, \delta \phi \rangle$$
 (16)

Using the definition of the adjoint transport operator and Eqs. (15) and (16) transforms to

$$\delta I = \langle \Phi_p, L_p^* \delta \Phi^* \rangle$$
,

or

$$\delta I = \langle \phi_p, (L^{''} - L_p^{''}) \phi^{''} \rangle \quad . \tag{17}$$

It is assumed that the perturbed differential scattering cross section can be expressed as a function of the unperturbed differential scattering cross section by

$$\Sigma_{\rm sp}(\underline{r},\underline{\Omega}\rightarrow\underline{\Omega}',E\rightarrow E') = C.\Sigma_{\rm p}(\underline{r},\underline{\Omega}\rightarrow\underline{\Omega}',E\rightarrow E') \quad , \quad (18)$$

and similarly for the total cross section

$$\Sigma_{\text{TD}}(\underline{r}, E) = C.\Sigma_{\text{T}}(\underline{r}, E) , \qquad (19)$$

where C is a small quantity, which can be a function of E and Ω . Defining $\delta C = C - 1$, we have

$$\delta C = \frac{\Sigma_{Tp}(\underline{r}, E) - \Sigma_{T}(\underline{r}, E)}{\Sigma_{T}(\underline{r}, E)} = \frac{\Sigma_{sp}(\underline{r}, \underline{\Omega} + \underline{\Omega}', E + E) - \Sigma_{s}(\underline{r}, \underline{\Omega} + \underline{\Omega}', E + E')}{\Sigma_{s}(\underline{r}, \underline{\Omega} + \underline{\Omega}', E + E')}$$
(20)

so that

$$\delta I(E) = \delta C \int d\underline{r} \int d\underline{\Omega} \cdot \Phi_{p} \{ -\Sigma_{T}(\underline{r}, E) \cdot \Phi^{*}(\underline{r}, \underline{\Omega}, E) + \int dE' \int d\underline{\Omega}' \Sigma_{s}(\underline{r}, \underline{\Omega} + \underline{\Omega}', E + E') \cdot \Phi^{*}(\underline{r}, \underline{\Omega}', E') \} .$$
(21)

The cross-section sensitivity function $\mathbf{F}_{\mathbf{\Sigma}_{\mathbf{X}}}(\mathbf{E})$ is defined by

$$F_{\Sigma_{\mathbf{X}}}(E) = \frac{\partial I/I}{\partial \Sigma_{\mathbf{X}}/\Sigma_{\mathbf{X}}}, \qquad (22)$$

and can be approximated by

$$F_{\Sigma_{\mathbf{x}}}(\mathbf{E}) \stackrel{\cong}{=} \frac{1}{\mathbf{I}} \int d\mathbf{r} \int d\Omega \left\{ -\Phi(\mathbf{r}, \underline{\Omega}, \mathbf{E}) . \Sigma_{\mathbf{x}, \mathbf{T}}(\mathbf{r}, \mathbf{E}) . \Phi^{\star}(\mathbf{r}, \underline{\Omega}, \mathbf{E}) \right. \\ + \int d\underline{\Omega}' \int d\mathbf{E}' \Phi(\mathbf{r}, \underline{\Omega}, \mathbf{E}) . \Sigma_{\mathbf{x}, \mathbf{s}}(\mathbf{r}, \underline{\Omega} \stackrel{\cdot}{=} \underline{\Omega}', \mathbf{E} \stackrel{\cdot}{=} \mathbf{E}') . \Phi^{\star}(\mathbf{r}, \underline{\Omega}', \mathbf{E}') \right\} . (23)$$

The sensitivity function $F_{\sum_{\mathbf{X}}}(\mathbf{E})$ represents the dependence or sensitivity of a design parameter of interest to a particular cross section $\Sigma_{\mathbf{X}}$ at energy E. The first term is usually referred to as the loss term and the second term is called the gain term. 27

The cross-section sensitivity profile $P_{\Sigma_{_{\mathbf{X}}}}^{\mathbf{g}}$ is then defined as

$$P_{\Sigma_{\mathbf{X}}}^{\mathbf{g}} = \frac{1}{\Delta u^{\mathbf{g}}} \int_{E_{\mathbf{g}}}^{E_{\mathbf{g}-1}} dE F_{\Sigma_{\mathbf{X}}}(E) . \qquad (24)$$

The scaling factor Δu^g is the lethargy width of group g and is introduced as a normalization factor in order to remove the influence of the choice of the group structure.

Remarks

1. In the previous section $\Sigma_{\mathbf{x}}$ represents a partial cross section for a particular material. $\Sigma_{\mathbf{x}}$ can be an absorption cross section, a total cross section, a differential scattering cross section, a reaction cross section, etc. Therefore $\Sigma_{\mathbf{x}}$ has a surpressed index

which indicates the specific partial cross section. When evaluating the cross-section sensitivity profile for a partial cross section only the appropriate part, either the loss term or the gain term, will have to be considered in Eq. (23). When the partial cross section is not related to the production of secondary particles (e.g., a differential scattering cross section) the sensitivity profile in the multigroup form is referred to by Gerstl as a vector cross-section sensitivity profile. Obviously such cross sections contribute only to the loss term.

- 2. It is possible to define a net or a total sensitivity profile, which can be obtained by summing the loss and the gain terms for various partial reactions. The net sensitivity profile can be used to determine how important a particular element is with respect to a particular response.
- 3. Note that while deriving an expression for the cross-section sensitivity profile, we implicitly assumed that the response function was independent from the partial cross section for which a sensitivity profile is desired. If this assumption does not hold, an extra term has to be added to the previously obtained expressions. When the response function is also the cross section for which a sensitivity profile is sought, the sensitivity function will take the form

$$\frac{\partial I/I}{\partial \Sigma_{\mathbf{x}}/\Sigma_{\mathbf{x}}} = \frac{\langle \mathbf{R}, \mathbf{\Phi} \rangle}{I} + \frac{\langle \mathbf{\Phi}, \mathbf{L}_{\Sigma_{\mathbf{x}}} \mathbf{\Phi}^{*} \rangle}{I} , \qquad (25)$$

where L_{χ} represents that portion of the transport operator that contains the cross-section set $\{\Sigma_{\chi}\}$. In this expression the first term is a direct effect and the second term is an indirect effect. If the direct effect is present, the indirect effect will usually be negligible. A summary of the various possibilities is given in Table I.

4. The spatial integration in Eq. (23) has to be carried out over the perturbed regions only.

2.2.3 Explicit expression for the cross-section sensitivity profile in discrete ordinates form for a two-dimensional geometry representation

Coordinate system

The coordinate systems for x-y and r-z geometry are shown in Figs. 2a and 2b. 53 In both geometries ϕ was chosen to be the angle of rotation about the μ -axis such that $d\Omega = d\mu.d\phi$, and since $\xi^2 + \mu^2 + \nu^2 = 1$, we have

TABLE I: FORMULAS FOR THE SENSITIVITY FUNCTION

Case	Sensitivity Function	
a. $I = \langle R, \phi \rangle$, where $\Sigma_i \neq R$	$F_{\Sigma_i} = \langle \phi^{\uparrow}, L_{\Sigma} \phi \rangle / I$	
b. $I = \langle R, \Phi \rangle$, where $\Sigma_i = R$ and $\Sigma_i \not\subset L$	$F_{\sum_{i}} = \langle R, \Phi \rangle / I$	
c. $I = \langle R, \Phi \rangle$, where $\Sigma_i = R$ and $\Sigma_i \subseteq L$	F _Σ = <r,φ>/I + <Φ[*],L_Σ Φ>/I direct indirect effect effect The direct effect is usually dominant</r,φ>	
<pre>< > indicates the inner product over the phase space ξ L stands for the transport operator</pre>		
$^{L}\Sigma_{i}$ represents that portion of the transport operator which contains cross-section $\{\Sigma_{i}^{}\}$		
⊄ means is not included in		

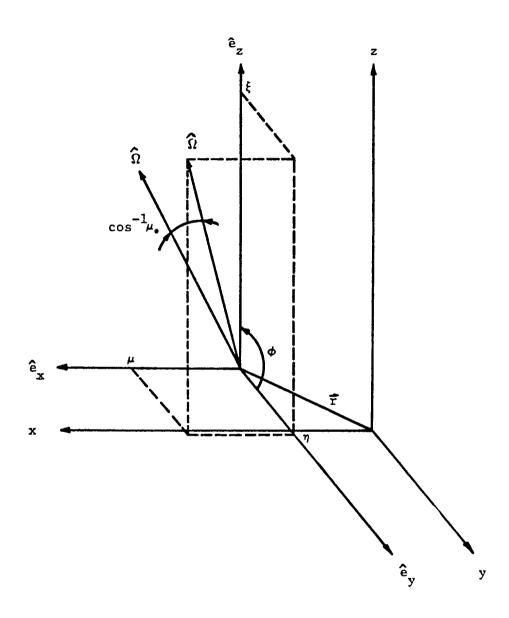


Figure 2. a. Coordinates in x-y geometry

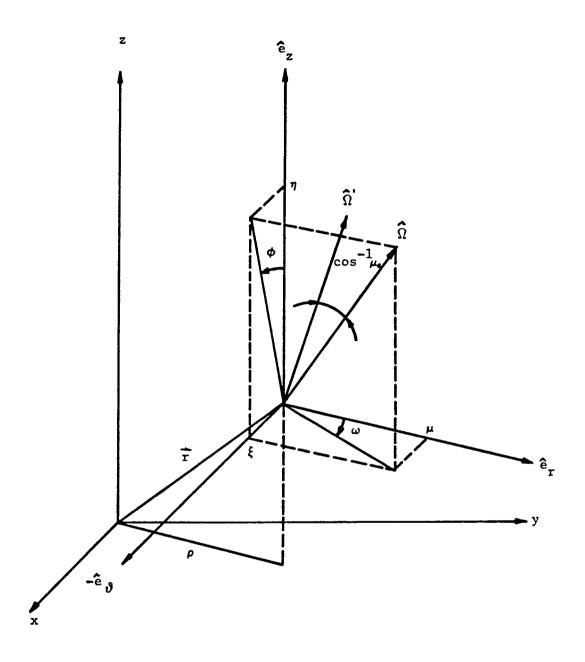


Figure 2. b. Coordinates in r-z geometry

$$\xi = (1 - \mu^2)^{\frac{1}{2}}.\sin\phi$$
 ,

and

$$\eta = (1 - \mu^2)^{\frac{1}{2}} . \cos \phi$$
.

Therefore both the x-y and the r-z geometry representation will lead to identical expressions for the sensitivity profile, with the understanding that in x-y geometry the angular flux is represented by $\Phi(x,y,\mu,\phi)$, and by $\Phi(r,z,\mu,\phi)$ in the case of r-z geometry.

We now will derive an expression for the sensitivity profile in an x-y or in an r-z geometry representation.

Method

Before deriving an expression in a discrete-ordinates formulation and a two-dimensional geometry for Eq. (23), a brief overview of the methods used is outlined.

Gain term:

In order to represent the differential scattering cross section in a multigroup format, the common approach to expand the differential scattering cross section in Legendre polynomials is used. The number of terms in the expansion is a function of the order of anisotropic scattering. The Legendre polynomials are a function of the scattering angle μ_{α} (Fig. 2). Introducing spherical harmonics

functions and applying the addition theorem for spherical harmonics, the dependence on μ_0 can be replaced by μ 's and ϕ 's. The angular fluxes are expanded in flux moments. The integrals are replaced by summations. Defining multigroup cross sections an expressions for the gain term can be obtained.

Loss term:

An explicit expression for the loss term can be derived based on angular fluxes or based on flux moments. In order to check the internal consistency in SENSIT-2D both methods will be applied. The derivation of an expression based on angular fluxes is straightforward: the integrations are replaced by summations and the appropriate multigroup cross sections are defined. An expression as a function of flux moments can be obtained by expanding the fluxes in flux moments, using spherical harmonics functions. The orthogonality relation of spherical harmonics is applied, the integrations are replaced by summations and appropriate multigroup cross sections are defined. Finally an expression for the loss term is the result.

Analytical derivations

Expand the differential scattering cross section in Legendre polynomials according to

$$\Sigma_{x,s}(\underline{\Omega} \rightarrow \underline{\Omega}', E \rightarrow E') = \Sigma_{x,s}(\mu_o, E \rightarrow E') = \sum_{\ell=0}^{LMAX} \Sigma_{\ell}(\mu_o) \Sigma_{s,\ell}(E \rightarrow E'), \quad (26)$$

where the $P_{\ell}(\mu_0)$'s are the Legendre polynomials and LMAX the order of anisotropic scattering. Here, the scattering angle μ_0 can be written as

$$\begin{split} \mu_{o} &= \underline{\Omega}.\underline{\Omega}' = \Omega_{\mathbf{X}}\Omega_{\mathbf{X}}' + \Omega_{\mathbf{y}}\Omega_{\mathbf{y}}' + \Omega_{\mathbf{z}}\Omega_{\mathbf{z}}' \ , \\ \\ \nu_{o} &= \mu\mu' + \eta\eta' + \xi\xi' \ , \\ \\ &= \mu\mu' + (1-\mu^{2})^{\frac{1}{2}}(1-\mu'^{2})^{\frac{1}{2}}\cos\varphi\cos\varphi' + (1-\mu^{2})^{\frac{1}{2}}(1-\mu'^{2})^{\frac{1}{2}}\sin\varphi\sin\varphi \ , \\ \\ \text{or} \\ \\ \mu_{o} &= \mu\mu' + (1-\mu^{2})^{\frac{1}{2}}(1-\mu'^{2})^{\frac{1}{2}}\cos(\varphi-\varphi') \ . \end{split}$$

The spherical harmonics addition theorem states that (see e.g., Bell and $Glasstone^{62}$)

$$P_{\ell}(\mu_{0}) = P_{\ell}(\mu)P_{\ell}(\mu') + 2\sum_{k=1}^{\ell} \frac{(\ell-k)!}{(\ell+k)!} P_{\ell}^{k}(\mu)P_{\ell}^{k}(\mu')\cos[k(\phi-\phi')], \quad (27)$$

where the $P_\ell^k(\mu)$'s are the associated Legendre polynomials. The above expression can then be reformulated as

$$P_{\ell}(\mu_{o}) = \sum_{k=0}^{\ell} \frac{(2-\delta_{ko})(\ell-k)!}{(\ell+k)!} P_{\ell}^{k}(\mu) P_{\ell}^{k}(\mu') \cos[k(\phi-\phi')]$$

$$= \sum_{k=0}^{\ell} \left[\frac{(2-\delta_{ko})(\ell-k)!}{(\ell+k)!} \right]^{\frac{1}{2}} \left[\frac{(2-\delta_{ko})(\ell-k)!}{(\ell+k)!} \right]^{\frac{1}{2}} P_{\ell}^{k}(\mu) P_{\ell}^{k}(\mu')$$

$$\times (\cos k\phi \cos k\phi' + \sin k\phi \sin k\phi') . \tag{28}$$

We define

$$R_{\ell}^{k}(\mu,\phi) = \left[\frac{(2-\delta_{k0})(\ell-k)!}{(\ell+k)!}\right]^{\frac{1}{2}} P_{\ell}(\mu)\cos k\phi , \qquad (29)$$

and

$$Q_{\ell}^{k}(\mu,\phi) = \left[\frac{(2-\delta_{k0})(\ell-k)!}{(\ell+k)!}\right]^{\frac{1}{2}} P_{\ell}^{k}(\mu)\sin k\phi . \qquad (30)$$

so that

$$P_{\ell}(\mu_{o}) = \sum_{k=0}^{\ell} \{R_{\ell}^{k}(\mu, \phi)R_{\ell}^{k}(\mu', \phi') + Q_{\ell}^{k}(\mu, \phi)Q_{\ell}^{k}(\mu', \phi')\} . \tag{31}$$

The Q terms will generate odd moments which will vanish on integration, thus the Q terms will be omitted in the following discussion. The R_{ℓ}^k terms are the spherical harmonics polynomials. Using the above expression for $P_{\ell}(\mu_0)$ in the expansion of the scattering cross section, we have

$$\Sigma_{\mathbf{x},\mathbf{s}}(\underline{\Omega} \rightarrow \underline{\Omega}', \mathbf{E} \rightarrow \mathbf{E}') = \sum_{\ell=0}^{LMAX} \frac{2\ell+1}{4\pi} \Sigma_{\mathbf{s},\ell} (\mathbf{E} \rightarrow \mathbf{E}') \sum_{k=0}^{\ell} R_{\ell}^{k}(\mu,\phi) R_{\ell}^{k}(\mu',\phi') , \quad (32)$$

where LMAX is the order of anisotropic scattering.

The second term of the sensitivity profile, Eq. (24), becomes

$$\frac{1}{1\Delta u^g} \int_{E_g}^{E_{g-1}} dE \int_{V} d\underline{r} \int_{0}^{\infty} dE' \int_{\ell=0}^{E_{max}} \frac{2\ell+1}{4\pi} \Sigma_{s,\ell}(E \to E') \int_{k=0}^{\ell} 2 \int_{-1}^{1} d\mu \int_{0}^{\pi} d\phi$$

$$R_{\ell}^{\mathbf{k}}(\mu,\phi)\Phi(\underline{r},\underline{\Omega},\mathbf{E}) \quad 2\int_{-1}^{1} d\mu' \int_{0}^{\pi} d\phi' R_{\ell}^{\mathbf{k}}(\mu',\phi')\Phi^{\star}(\underline{r},\underline{\Omega}',\mathbf{E}') \quad . \quad (33)$$

Note that

$$\int_{-1}^{1} d\mu \int_{0}^{\pi} d\phi R_{\ell}^{k}(\mu,\phi)R_{m}^{n}(\mu,\phi) = \frac{2\pi}{2\ell+1} \delta_{\ell m} \delta_{kn} , \qquad (34)$$

and therefore the angular flux can be expanded according to

$$\Phi(\underline{\Omega}, E) = \sum_{\ell=0}^{\infty} (2\ell+1) \sum_{k=0}^{\ell} R_{\ell}^{k} \Phi_{\ell}^{k}(E) , \qquad (35a)$$

where
$$\Phi_{\ell}^{k}(E) = \int_{-1}^{1} d\mu \int_{p}^{1} d\phi R_{\ell}^{k} \Phi(\underline{\Omega}, E)/2\pi$$
, (35b)

and similarly for the adjoint angular flux

$$\Phi (\underline{\Omega}, E) = \sum_{\ell=0}^{\Sigma} (2\ell+1) \sum_{k=0}^{\ell} R_{\ell}^{k} \Phi_{\ell}^{*k}(E) , \qquad (36a)$$

where
$$\Phi_{\ell}^{*k}(E) = \int_{-1}^{1} d\mu \int_{0}^{\pi} d\phi R_{\ell}^{k} \Phi(\underline{\Omega}, E)/2\pi$$
, (36b)

Introducing these expansions in the sensitivity profile, the gain term becomes

$$P_{\Sigma_{x,gain}}^{g} = \frac{4\pi}{I\Delta u^{g}} \int_{V}^{g} d\underline{r} \int_{g'=1}^{GMAX} \int_{E_{g'}}^{E_{g'}-1} d\underline{E}' \int_{g}^{E_{g-1}} d\underline{E} \int_{g}^{LMAX} (2\ell+1) \Sigma_{s,\ell}(\underline{E} \to \underline{E}')$$

$$- \sum_{k=0}^{\ell} \phi_{\ell}^{k}(\underline{E}) \phi_{\ell}^{*k}(\underline{E}') , \qquad (37)$$

where GMAX is the number of energy groups. Defining

$$\Sigma_{s,\ell}^{g \to g'} \Phi_{\ell}^{kg} \Phi_{\ell}^{*kg'} = \int_{E_{g'}}^{E_{g'}-1} dE' \int_{E_{g}}^{E_{g-1}} dE \Sigma_{s,\ell}(E \to E') \Phi_{\ell}^{k}(E) \Phi_{\ell}^{*k}(E') , \qquad (38)$$

and discretizing over the spatial variable we have

$$P_{\sum_{\mathbf{x},\mathbf{gain}}}^{\mathbf{g}} = \frac{4\pi}{I\Delta u^{\mathbf{g}}} \sum_{\mathbf{g}'=1}^{\mathbf{GMAX}} \sum_{\ell=0}^{\mathbf{LMAX}} (2\ell+1) \sum_{\mathbf{s},\ell}^{\mathbf{g} \to \mathbf{g}'} \sum_{k=0}^{\ell} \sum_{i=1}^{\mathbf{IPERT}} V_{i} \phi_{\ell}^{k} \mathbf{g}'(i) \phi_{\ell}^{*k} \mathbf{g}'(i) , \quad (39)$$

where IPERT is the number of perturbed spatial intervals and i indicates the spatial interval. If there is no upscattering, and introducing

$$\Psi_{\ell}^{gg'} = 4\pi \sum_{k=0}^{\ell} (2\ell+1) \sum_{i=1}^{\text{IPERT}} V_i \varphi_{\ell}^{kg}(i) \varphi_{\ell}^{kg'}(i) , \qquad (40)$$

we have

$$P_{\Sigma_{x,gain}}^{g} = \frac{1}{I\Delta u^{g}} \sum_{\ell=0}^{LMAX} \sum_{g'=g}^{GMAX} \Sigma_{s,\ell}^{g \to g'} \psi_{\ell}^{gg'} . \tag{41}$$

The loss term of the sensitivity profile is given by

$$P_{\Sigma_{x,loss}}^{g} = \frac{1}{I\Delta u^{g}} \int_{E_{g}}^{E_{g-1}} dE \int_{V} d\underline{r} \int d\underline{q} \left\{ -\Phi(\underline{r},\underline{\Omega},E) \Sigma_{x,T}(E) \Phi^{*}(\underline{r},\underline{\Omega},E) \right\} , \quad (42)$$

$$= \frac{1}{I\Delta u^{g}} \int_{E_{g}}^{E_{g-1}} dE \int_{V} d\underline{r} 2 \int_{-1}^{1} d\mu \int_{o}^{\pi} d\phi \left\{ -\Phi(\mu, \phi, E) \sum_{x, T} (E) \Phi^{(\mu, \phi, E)} \right\},$$
(43)

$$= \frac{-4\pi}{I\Delta u^g} \int_{E_o}^{E_g-1} dE \int_{V} d\underline{r} \sum_{\mathbf{x},\mathbf{T}} (E) \sum_{m=1}^{MM} w_m \Phi(\mu_m, \phi_m, E) \Phi^{*}(\mu_m, \phi_m) , \qquad (44)$$

where $\phi_m = \tan^{-1}(1 - \mu_m^2 - \eta_m^2)^{\frac{1}{2}}/\mu_m$ for $\mu_m > 0$, (45)

$$\phi_{m} = \tan^{-1}(1 - \mu_{m}^{2} - \eta_{m}^{2})^{\frac{1}{2}}/\mu_{m} + \pi \quad \text{for } \mu_{m} < 0 ,$$
 (46)

and MM is the number of angular fluxes per quadrant.

Define

$$\begin{array}{ccc}
& & \text{MM} & & \text{E}_{g-1} \\
& & \sum_{m=1}^{g} & \int_{E_g} & \text{dE } \sum_{x,T} (E) \cdot \Phi(\mu_m, \phi_m, E) \cdot \Phi^{\stackrel{+}{\leftarrow}}(\mu_m, \phi_m, E) = \sum_{x,T}^{g} & \sum_{m=1}^{MM} & \phi_m^g \phi_m^{\stackrel{+}{\leftarrow}g} & , \quad (47)
\end{array}$$

so that

$$P_{\sum_{\mathbf{x}, \mathbf{loss}}}^{\mathbf{g}} = \frac{-4\pi}{1\Delta u^{\mathbf{g}}} \sum_{\mathbf{x}, \mathbf{T}}^{\mathbf{g}} \sum_{i=1}^{\mathbf{IPERT}} V_{i} \sum_{m=1}^{\mathbf{MM}} w_{m} \phi_{m}^{\mathbf{g}}(i) \phi_{m}^{*\mathbf{g}}(i) . \tag{48}$$

Introducing

$$\chi^{g} = 4\pi \sum_{i=1}^{IPERT} V_{i} \sum_{m=1}^{MM} w_{m}^{\phi g}(i)^{\phi_{m}^{*g}}(i) , \qquad (49)$$

we have

$$P_{\Sigma_{x,loss}}^{g} = \frac{-1}{I\Delta u^{g}} \Sigma_{x,T}^{g} \chi^{g} . \qquad (50)$$

Note that the gain term was expressed as a function of flux moments, while the loss term was expressed in terms of angular fluxes. When the gain term is expressed as a function of flux moments, a very useful

relationship between the Ψ 's and the χ 's will be obtained. For this case, substituting Eqs. (36) and (38) into Eq. (42), the loss term can be expanded as

$$P_{\Sigma_{x,loss}}^{g} = \frac{-2}{I\Delta u^{g}} \int_{E_{g}}^{E_{g-1}} \int_{V} d\underline{r} \Sigma_{x,T} \int_{-1}^{1} d\mu \int_{0}^{\pi} d\varphi \sum_{\ell=0}^{\infty} \left\{ (2\ell+1) \sum_{k=0}^{\ell} R_{\ell}^{k} \varphi^{k} \ell \right\}$$

$$\sum_{\ell=0}^{\infty} \left\{ (2\ell+1) \sum_{k=0}^{\ell} R_{\ell}^{k} \varphi^{*k} \ell \right\} . \tag{51}$$

Using the orthogonality relations Eq. (34) and defining the multigroup total cross section for group g by

$$\begin{array}{cccc}
\operatorname{LMAX} & \ell & & & \\
\Sigma & \Sigma & & & \\
\ell=0 & k=0 & & \\
\end{array}$$

$$\begin{array}{ccccc}
\Sigma_{\mathbf{x},T}^{\mathbf{g}} & \Phi_{\ell}^{\mathbf{k}g}(\underline{\mathbf{r}}) & \Phi_{\ell}^{\mathbf{k}g}(\underline{\mathbf{r}}) & = & \\
\Sigma & \Sigma & & \int \\
\ell=0 & k=0 & \\
\end{array}$$

$$\begin{array}{cccc}
\Sigma_{\mathbf{x},T}^{\mathbf{g}} & \Phi_{\ell}^{\mathbf{k}g}(\underline{\mathbf{r}},E) & \Phi_{\ell}^{\mathbf{k}g}(\underline{\mathbf{r}},E) \\
\ell=0 & k=0 & \\
\end{array}$$

$$\begin{array}{cccc}
\Sigma_{\mathbf{x},T}^{\mathbf{g}} & \Phi_{\ell}^{\mathbf{k}g}(\underline{\mathbf{r}},E) & \Phi_{\ell}^{\mathbf{k}g}(\underline{\mathbf{r}},E) \\
\ell=0 & k=0 & \\
\end{array}$$
(52)

we have after discretizing the spatial variable, \underline{r} , and truncating the summation over ℓ ,

$$P_{\Sigma_{x,loss}}^{g} = \frac{-4\pi \sum_{x,T}^{g}}{I\Delta u^{g}} \sum_{\ell=0}^{LMAX} (2\ell+1) \sum_{i=1}^{IPERT} V_{i} \phi_{\ell}^{kg}(i) \phi_{\ell}^{kg}(i) . \qquad (53)$$

Introducing

$$\chi^{g} = \sum_{\varrho=0}^{LMAX} \Psi^{gg}_{\varrho} , \qquad (54)$$

the expression for the loss term reduces to Eq. (50) again.

Summary

$$P_{\Sigma_{\mathbf{X}}}^{\mathbf{g}} = \frac{1}{1.\Delta u^{\mathbf{g}}} - \Sigma_{\mathbf{X},\mathbf{T}}^{\mathbf{g}} \chi^{\mathbf{g}} + \sum_{\ell=0}^{LMAX} \sum_{\mathbf{g'}=\mathbf{g}}^{CMAX} \Sigma_{\mathbf{s},\ell}^{\mathbf{g} \rightarrow \mathbf{g'}} \psi_{\ell}^{\mathbf{g} \mathbf{g'}}, \qquad (55)$$

where

 $\Sigma_{x,T}^{g}$ = total macroscopic cross section for reaction type x,

Σ^{g→g'}_{s,l} = l'th Legendre coefficient of the scattering matrix element for energy transfer from group g to group g', as derived from the differential scattering cross section for reaction type x,

$$\Psi_{\ell}^{gg'} = 4\pi(2\ell+1) \sum_{i=1}^{IPERT} \sum_{k=0}^{\ell} V_{i} \Phi_{\ell}^{kg}(i) \Phi_{\ell}^{kg'}(i)$$
(56)

= spatial integral of the product of the spherical harmonics expansions for the regular and adjoint angular fluxes,

$$\chi^{g} = 4\pi \sum_{i=1}^{IPERT} V_{i} \sum_{m=1}^{MM} \Phi_{m}^{g}(i) \Phi_{m}^{\dot{g}}(i) w_{m}$$
(57)

= numerical integral of the product of forward and adjoint angular fluxes over all angles and all spatial intervals described by i=1 . . ., IPERT,

$$= \sum_{\ell=0}^{LMAX} \Psi_{\ell}^{gg} . \tag{58}$$

Note that expression (55) is identical with the expression for the cross-section sensitivity profile in a one-dimensional formulation. 46

The flux moments can be expressed in terms of angular fluxes corresponding to

$$\Phi_{\ell}^{kg} = \int_{-1}^{1} d\mu \int_{0}^{\pi} d\phi R_{\ell}^{k} \Phi^{g}(\underline{\Omega}) / 2\pi = \sum_{m=1}^{MM} \Phi_{m}^{g'} R_{\ell}^{k}(\mu_{m}, \phi_{m}) w_{m} , \qquad (59)$$

and

$$\Phi_{\ell}^{\star kg'} = \int_{-1}^{1} d\mu \int_{0}^{\pi} d\phi R_{\ell}^{k} \Phi^{\star g'}(\underline{\Omega}) / 2\pi = \sum_{m=1}^{MM} \Phi_{m}^{g'} R_{\ell}^{k}(\mu_{m}, \phi_{m}) w_{m} . \qquad (60)$$

 $R_{\varrho}^{k}(\Omega)$ = spherical harmonics function

V; = volume of rotated triangles

 Δu^g = lethargy width of energy group g

= $\ln (E^g/E^{g+1})$, where E^g and E^{g+1} are upper and lower energy group boundaries

= integral response as calculated from forward fluxes only

$$= \begin{array}{ccc} \text{IDET} & \text{IGM} \\ & \Sigma & \Sigma & V_i R_i^g \phi_0^{0g}(i) \\ & i=1 & g=1 \end{array}$$

R; = spatially and group-dependent detector response function.

2.3 Source and Detector Sensitivity Profiles 46

Source and detector sensitivity profiles indicate how sensitive the

integral response I or I^* is to the energy distribution of the source, or to the detector response R. The integral response I can be calculated from the forward flux, according to Eq. (63), or from the adjoint flux, according to Eq. (64). When the integral response is calculated from the adjoint flux it will be denoted as I^* . Ideally, I will be equal to I^* .

The sensitivity of the integral response to the energy distribution of the detector response function or the source can therefore be expressed by the sensitivity profiles

$$P_{R}^{g} = \int_{V_{d}} d\underline{r} \int_{E_{g}}^{E_{g-1}} dE \int d\underline{\Omega} R(\underline{r}, E) \cdot \underline{\Phi}(\underline{r}, \underline{\Omega}, E) / I \cdot \Delta u^{g}$$
(61)

and

$$P_{Q}^{g} = \int_{V_{S}} d\underline{r} \int_{E_{g}}^{g-1} dE \int d\underline{\Omega} Q(\underline{r},\underline{\Omega},E) \cdot \Phi^{\dot{n}}(\underline{r},\underline{\Omega},E) / I^{\dot{n}} \cdot \Delta u^{g} , \qquad (62)$$

where $R(\underline{r},E)$ is the detector response and $Q(\underline{r},\underline{\Omega},E)$ is the angular source, and V_d and V_s are the volumes of the detector and the source region. I was used in the denumerator of P_R^g and I^* was used in the denominator of P_Q^g for internal consistency. It is obvious that the integral source and detector sensitivities, S_Q and S_R , will be equal to one.

It is possible to derive an expression similar to Eq. (61) for the sensitivity of the integral response to the angular distribution of the source. The derivation of explicit expressions for P_R^g and P_Q^g is straightforward. The detector sensitivity profile as a function of the scalar fluxes becomes

$$P_{R}^{g} = \sum_{i=1}^{IDET} V_{i}.R_{i}^{g}.\Phi_{0}^{0g}(i) / I.\Delta u^{g} , \qquad (63)$$

where the $\Phi_0^{0g}(i)$ are the scalar fluxes for group g at interval i, IDET is the number of detector intervals, and R_1^g is the detector response at interval i for group g.

For the source sensitivity profile in case of an isotropic source Eq. (62) transforms into

$$P_{Q}^{g} = \sum_{i=1}^{ISRS} V_{i} \cdot Q_{i}^{g} \cdot \Phi_{0}^{0g}(i) / I^{*} \cdot \Delta u^{g} , \qquad (64)$$

where Q_i^g is the voluminar source for group g at source interval i. In the case of an anisotropic source we defined $Q^g(\underline{r},\underline{\Omega})$ by

$$Q^{g}(\underline{r},\underline{\Omega}).\phi^{*g}(\underline{r},\underline{\Omega}) = \int_{E_{g}}^{E_{g-1}} dE \ Q(\underline{r},\underline{\Omega},E).\phi^{*}(\underline{r},\underline{\Omega},E) , \qquad (65)$$

and expand the angular source according to

$$Q^{g}(\underline{r},\underline{\Omega}) = Q^{g}(\underline{r},\mu,\Phi) = \sum_{\ell=0}^{IQAN} (2\ell+1) \sum_{k=0}^{\ell} R_{\ell}^{k}(\mu,\Phi) \cdot Q_{\ell}^{kg}(\underline{r})/2\pi , \qquad (66)$$

where IQAN is the order of anisotropy of the source.

Substituting Eqs. (65) and (66) in Eq. (63), discretizing the spatial variable and using Eq. (36), the expression for the source sensitivity profile becomes

$$P_Q^g = 2. \sum_{i=1}^{ISRS} V_i \sum_{\ell=0}^{IQAN} (2\ell+1) \sum_{k=0}^{\ell} Q_{\ell}^{gk}(i) \phi_{\ell}^{kgk}(i) / I^{*}.\Delta u^g$$

As in Eq. (61) we can also define an angular source sensitivity function. The angular source sensitivity function indicates how sensitive the integral response I^{\pm} is to the angular distribution of the source, or

$$F_{Q}^{\Omega} = \frac{1}{I} \int_{V_{S}} d\underline{r} \int_{0}^{\infty} dE \ Q(\underline{r}, \underline{\Omega}, E) . \phi^{*}(\underline{r}, \underline{\Omega}, E) / I^{*} . \tag{68}$$

2.4 Sensitivity Profiles for the Secondary Energy Distribution and the Secondary Angular Distribution

The theory of the secondary energy distribution (SED) and the secondary angular distribution (SAD) sensitivity analysis was originated by Gerstl. 43-46 Physically the only difference between a secondary energy distribution and a cross-section sensitivity profile is the way in which the integration over the energy variable is carried out. The "hot-cold" and the "forward-backward" concepts lead to a simple formulation of secondary sensitivity theory and can easily be incorporated in an uncertainty analysis. Even when both those concepts are a rather coarse approximation they have the advantage that they are simple and can be physically understood.

A more rigorous formulation might be possible, but its simple physical interpretation would be lost. 63 The primary restriction on the application of secondary energy distribution and secondary angular distribution sensitivity profiles is the lack of cross-section uncertainty information in the proper format.

2.4.1 Introduction

The expression for the sensitivity profile for the differential scattering cross section is part of the gain term of the cross-section sensitivity profile and takes the form

$$P_{\Sigma_{\mathbf{x}}}(\underline{\Omega} \rightarrow \underline{\Omega}', E \rightarrow E') = \frac{1}{\Delta u^{g}. I} \int d\underline{r} \int d\underline{\Omega} \int_{E_{g}}^{E_{g}-1} dE \int_{0}^{\infty} dE' \int d\underline{\Omega}'$$

$$\times R_{\Sigma_{\mathbf{x}, gain}}(\underline{r}, \underline{\Omega} \rightarrow \underline{\Omega}', E \rightarrow E') , \qquad (69)$$

where $R_{\sum_{x,gain}}(\underline{r},\underline{\Omega},\underline{\Omega}',E\rightarrow E')$ is a shorthand notation for

$$R_{\sum_{\mathbf{x}, \text{gain}}}(\underline{\mathbf{r}}, \underline{\Omega} \rightarrow \underline{\Omega}', E \rightarrow E') = \Phi(\underline{\mathbf{r}}, \underline{\Omega}, E) \Sigma_{\mathbf{x}, \mathbf{s}}(\underline{\mathbf{r}}, \underline{\Omega} \rightarrow \underline{\Omega}', E \rightarrow E') \Phi(\underline{\mathbf{r}}, \underline{\Omega}', E')$$
(70)

and similarly,

$$R_{\sum_{\mathbf{x}, \text{gain}}}(\underline{\mathbf{r}}, \underline{\Omega}' \rightarrow \underline{\Omega}, \mathbf{E}' \rightarrow \mathbf{E}) = \Phi(\underline{\mathbf{r}}, \underline{\Omega}, \mathbf{E}) \Sigma_{\mathbf{x}, \mathbf{s}}(\underline{\mathbf{r}}, \underline{\Omega}' \rightarrow \underline{\Omega}, \mathbf{E} \rightarrow \mathbf{E}) \Phi^{*}(\underline{\mathbf{r}}, \underline{\Omega}, \mathbf{E}) \quad . \tag{71}$$

Equation (70) gives the contribution to the integral detector response, I, from the particles born at position \underline{r} with energy E', traveling in direction Ω' , since

$$I = \langle \Phi, L^{\dagger} \Phi^{\dagger} \rangle = \langle \Phi^{\dagger}, L \Phi \rangle . \tag{72}$$

Similarly, $R_{\sum_{\mathbf{x}, \mathbf{gain}}} (\underline{\mathbf{r}}, \underline{\Omega} \to \underline{\Omega}^{\dagger}, \mathbf{E}^{\dagger} \to \mathbf{E})$ gives the contribution to the integral detector response from the particles born at position $\underline{\mathbf{r}}$, with energy \mathbf{E} , traveling in direction $\underline{\Omega}$.

As it turns out, up to this point there is no difference in the physical interpretation of Eqs. (70) and (71). The way the integrations

are carried out will distinguish between the differential scattering cross-section sensitivity profile and the secondary energy distribution and secondary angular distribution sensitivity profile.

2.4.2 Further theoretical development

In this section we will elaborate on the physics behind the derivation of SEDs and SADs. Consider

$$F_{\sum_{x,s}}(E,E') = \frac{1}{I} \int d\underline{r} \int d\underline{\Omega} \int d\underline{\Omega}' R_{\sum_{x,gain}}(\underline{r},\underline{\Omega} \rightarrow \underline{\Omega}',E \rightarrow E') . \qquad (73)$$

In this expression $F_{\sum_{x,s}}$ represents the fractional change in the integral response per unit fractional change in the differential scattering cross section $\Sigma_{x,s}(E \rightarrow E')$; i.e., it is the fractional change in the integral response when the number of particles that scatter from E into E' is increased by one percent. Obviously this will always be a positive effect and will therefore be included in the gain term.

Similar to Eq. (73),

$$\widetilde{P}_{\Sigma_{x,s}}^{g} = \frac{1}{I} \int_{E_{g}}^{E_{g-1}} dE \int_{0}^{\infty} dE' \int d\underline{\Omega} \int d\underline{\Omega}' R_{\Sigma_{x,gain}}(\underline{r},\underline{\Omega} \rightarrow \underline{\Omega}', E \rightarrow E')$$
 (74)

represents the fractional change in the integral response when the number of particles that scatter from group g is increased by one percent. The tilda in Eq. (74) is introduced to distinguish from a lethargy normalized sensitivity profile.

In the adjoint formulation the equivalent of Eq. (73) will be

$$F_{\sum_{\mathbf{x},\mathbf{s}}}(E',E) = F_{SED}(E',E) = \frac{1}{I} \int d\underline{r} \int d\underline{\Omega} \int d\underline{\Omega}' R_{\sum_{\mathbf{x},gain}}(\underline{r},\underline{\Omega}' \to \underline{\Omega},E' \to E) ,$$
(75)

which represents the fractional change in the integral response per unit fractional change in differential scattering cross section $\Sigma_{\mathbf{x},\mathbf{s}}(E'\to\! E)$, i.e., it is the fractional change in the integral response when the number of primary particles that scatter from E' to E is increased by one percent, or for that matter that the number of secondary particles that were scattered from E into E' were increased by one percent. Again, this will always have a positive effect and will therefore constitute a gain term in the sensitivity profile.

Define

$$\tilde{P}_{SED}^{g} = \frac{1}{I} \int_{E_{g}}^{E_{g-1}} dE \int_{0}^{\infty} dE' \int d\underline{\Omega} \int d\underline{\Omega}' R_{\sum_{x,gain}} (\underline{r}.\underline{\Omega}' \rightarrow \underline{\Omega}, E' \rightarrow E) .$$
 (76)

While there is no difference in the physical meaning of Eqs. (73) and (75), the formulations (74) and (76) are different. Equation (74)

represents the fractional change in the integral response when the number of secondary particles that were scattered into group g have been increased by one percent.

It is clear from these examples that, depending on the way the integrations are done, several different sensitivity profiles can be constructed. In order to study the secondary angular distribution, we can introduce

$$F_{\sum_{\mathbf{x},\mathbf{gain}}}(\underline{\Omega},E') = F_{SAD}(\underline{\Omega},E') = \frac{1}{I} \int d\underline{r} \int_{0}^{\infty} dE \int d\underline{\Omega}' R_{\sum_{\mathbf{x},\mathbf{gain}}}(\underline{r},\underline{\Omega}' \rightarrow \underline{\Omega},E' \rightarrow E)$$
(77)

This expression gives the fractional change in the integral response when the number of secondary particles scattered from initial energy E' into final direction $\underline{\Omega}$ is increased by one percent. It will therefore be clear that

$$\tilde{P}_{SAD}(\underline{\Omega}) = \int dE' F_{SAD}(\underline{\Omega}, E')$$
 (78)

is the fractional change in the response function when the number of secondary particles which were scattered into direction $\underline{\Omega}$ was increased by one percent.

2.4.3 Secondary energy and secondary angular distribution sensitivity profiles

A double secondary energy distribution (SED) sensitivity profile is defined by

$$P_{SED}^{g'g} = \frac{1}{I\Delta u^g \Delta u^{g'}} \int_{E_g}^{E_{g-1}} dE \int_{E_{g'}}^{E_{g'-1}} dE' \int d\underline{r} \int d\underline{\Omega} \int d\underline{\Omega}' R_{\sum_{\mathbf{x}, gain}} (\underline{r}, \underline{\Omega}' \to \underline{\Omega}, E' \to E) ,$$
(79)

The energy integrated SED sensitivity profile becomes

$$P_{\text{SED}}^{g} = \frac{1}{I\Delta u^{g}} \int_{0}^{\infty} dE' \int_{E_{g}}^{E_{g-1}} dE \int d\underline{r} \int d\underline{\Omega}' R_{\sum_{\mathbf{x}, gain}} (\underline{r}, \underline{\Omega}' \rightarrow \underline{\Omega}, E' \rightarrow E) . \quad (80)$$

The differential sensitivity profile for the angular distribution of secondary particles scattered from initial energy E' is

$$P_{SAD}^{g'}(\underline{\Omega}) = \frac{1}{I\Delta u^g} \int_{E_g}^{E_{g'-1}} dE' \int_{0}^{\infty} dE \int d\underline{r} \int d\underline{\Omega}' R_{\sum_{\mathbf{x}, gain}} (\underline{r}, \underline{\Omega}' \rightarrow \underline{\Omega}, E \rightarrow E')$$
 (82)

An energy integrated SED sensitivity profile can be defined by

$$P_{SAD}(\underline{\Omega}) = \frac{1}{I} \int_{0}^{\infty} dE' \int_{0}^{\infty} dE \int d\underline{r} \int d\underline{\Omega}' R_{\sum_{s,gain}}(\underline{r},\underline{\Omega}' \rightarrow \underline{\Omega}, E \rightarrow E') . \qquad (82)$$

2.4.4 Integral sensitivities for SEDs and SADs

In order to make the sensitivity and uncertainty analysis for secondary energy distributions and secondary angular distributions less tedious, Gerstl introduced the concepts of the "hold-cold" SED and the "forward-backward" SAD integral sensitivity:

$$S_{SED}^{g'} = \int_{HOT} dE P_{SED}^{g'}(E) - \int_{COLD} dE P_{SAD}^{g'}(E) , \qquad (83)$$

and

$$S_{\text{SAD}} = \int_{\text{forward}} d\Omega P_{\text{SAD}}(\Omega) - \int_{\text{backward}} d\Omega P_{\text{SAD}}(\Omega) . \tag{84}$$

$$= \int_{\text{forward}} d\Omega P_{\text{SAD}}(\Omega) - \int_{\text{backward}} d\Omega P_{\text{SAD}}(\Omega) . \tag{84}$$

$$= \int_{\text{angles}} d\Omega P_{\text{SAD}}(\Omega) - \int_{\text{backward}} d\Omega P_{\text{SAD}}(\Omega) . \tag{84}$$

The forward-backward SAD integral sensitivity can be interpreted as the fractional change in the integral response when the number of secondaries which were scattered forward is increased by one percent, while the number of secondaries that were scattered backwards (μ <0) is decreased by one percent. The integral SAD sensitivity is a positive number which is labeled "forward" or "backward" depending whether the first or the second term in Eq. (84) is the larger one. Physically,

that positive number indicates how much more sensitive the response function is to forward scattered particles than to backward scattered particles, or vice versa.

For the hot-cold integral SED sensitivity, the concept of the median energy has to be introduced. In the multigroup formulation, the median energy defines the energy boundary which roughly divides the cross-section profile into two equal parts. The median energy and the integral SED sensitivity are illustrated in Fig. 3. Note that the median energy g' is a function of the primary energy group g'. For that reason also the integral SED sensitivity will depend on g'.

The hot-cold integral SED sensitivity expresses the fractional change in integral response when the number of secondaries which scatter in the "hot" part of the secondary energy distribution is increased by one percent while the number of secondaries scattered into the "cold" part is decreased by one percent. The integral hot-cold SED sensitivity is a positive number, labeled "hot" or "cold" depending on which term dominates in Eq. (83). That number indicates how much more sensitive the integral response is to particles scattered into the hot part of the secondary energy distribution than to particles scattered into the cold part, or vice versa.

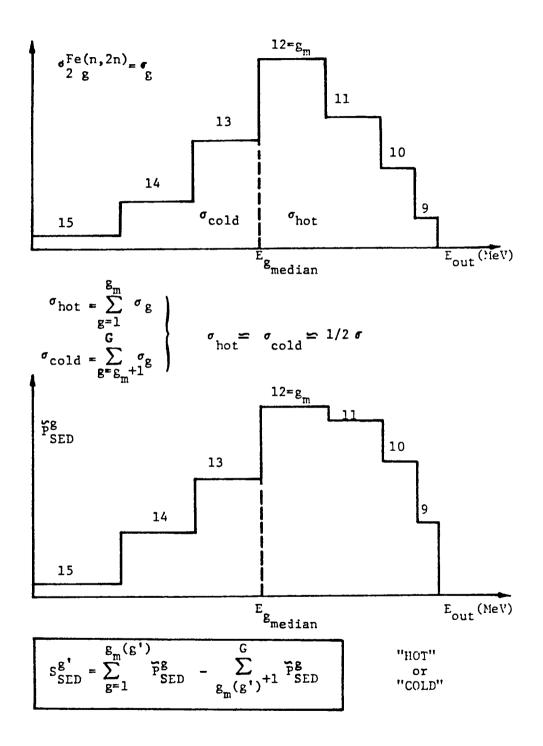


Figure 3. Definition of median energy and integral SED sensitivity 43

2.4.5 Explicit expressions for integral SED sensitivity profiles in a two-dimensional geometry representation

The expression for the double SED sensitivity profile, Eq. (79), is similar to the gain term of the cross-section sensitivity profile, Eq. (24). By comparing Eq. (79) with Eq. (24) and using Eq. (41), the explicit expression for the double SED sensitivity profile becomes

$$P_{SED}^{g',g} = \frac{1}{I\Delta u^g \Delta u^{g'}} \sum_{\ell=0}^{LMAX} \Sigma_{s,\ell}^{g' \to g} \Psi_{\ell}^{g'g} , \qquad (85)$$

From Eqs. (85) and (80), it follows that the energy integrated SED sensitivity profile for the case of no upscattering can be represented by

$$P_{SED}^{g} = \frac{1}{I\Delta u^{g}} \sum_{g'=1}^{g} \sum_{\ell=0}^{LMAX} \sum_{s,\ell}^{g' \to g} \psi_{\ell}^{g'g}.$$
 (86)

Using the definition for the integral SED sensitivity (83), it becomes clear that

$$S_{SED}^{g'} = \sum_{g=g'}^{g_{m}(g')} \Delta u^{g} \cdot P_{SED}^{g} - \sum_{g=g_{m}(g')+1}^{GMAX} \Delta u^{g} \cdot P_{SED}^{g} , \qquad (87)$$

where $g_m(g')$ is defined in Fig. 1.

2.6 Design Sensitivity Analysis

Design sensitivity analysis provides a method to estimate changes in integral response for a slightly altered design. The results are exact up to the second order with respect to the corresponding flux changes, but only exact up to the first order with respect to design changes. The theory presented in this section is applicable only when the design changes can be expressed in terms of macroscopic cross-section changes. Methods based on generalized perturbation theory have been applied to design sensitivity analysis. 14,37

The integral response for the perturbed system can be expressed by Eq. (88) for the adjoint difference formulation, 35

$$I_{AD} = \langle R, \phi \rangle - \langle \phi^{*}, \Delta L \phi \rangle = I - \delta I_{AD} , \qquad (88)$$

and by Eq. (89) in the forward difference formulation

$$I_{FD} = \langle Q, I \stackrel{*}{>} - \langle \Phi, \Delta L \stackrel{*}{\Phi} \stackrel{*}{>} = I - \delta I_{FD} . \tag{89}$$

Proceeding in a manner similar to the derivation of the crosssection sensitivity profile, the second-order term in the right hand side of Eqs. (88) and (89) can be written as

$$\delta I_{AD} = \int_{0}^{\infty} dE \int_{V_{d}} d\underline{r} \int d\underline{\Omega} \{ \Phi(\underline{r}, \underline{\Omega}, E) \delta \Sigma_{x, T}(\underline{r}, E) \Phi^{*}(\underline{r}, \underline{\Omega}, E) \}$$

$$+ \int_{\Omega}^{\infty} dE' \int d\Omega' \Phi(\underline{r}, \underline{\Omega}', E') \delta \Sigma_{\mathbf{x}, \mathbf{s}} (\underline{r}, \underline{\Omega}' \rightarrow \underline{\Omega}, E' \rightarrow E) \Phi^{*}(\underline{r}, \underline{\Omega}, E) \} , \qquad (90)$$

and

$$\delta I_{FD} = \int_{0}^{\infty} dE \int_{V_{S}} d\underline{r} \int d\underline{\Omega} \{ \Phi(\underline{r}, \underline{\Omega}, E) \delta \Sigma_{x, T}(\underline{r}, E) \Phi^{*}(\underline{r}, \underline{\Omega}, E) \}$$

$$+ \int_{0}^{\infty} dE' \int d\underline{\Omega}' \Phi(\underline{r},\underline{\Omega},E) \delta \Sigma_{x,s}(\underline{r},\underline{\Omega} \rightarrow \underline{\Omega}',E \rightarrow E') \Phi^{*}(\underline{r},\underline{\Omega}',E') . \qquad (91)$$

In the above expressions we used

$$\delta \Sigma_{x,T} = \Sigma_{x,T} - \bar{\Sigma}_{x,T} , \qquad (92)$$

and

$$\delta \Sigma_{\mathbf{x},\mathbf{s}} = \Sigma_{\mathbf{x},\mathbf{s}} - \bar{\Sigma}_{\mathbf{x},\mathbf{s}} , \qquad (93)$$

where Σ refers to a perturbed cross section and $\bar{\Sigma}$ to a reference cross section.

A design sensitivity coefficient X can be defined as the ratio of the integral response for the altered design over the integral response for the original model. Depending whether the forward or the adjoint difference method are used, the design sensitivity coefficient equals

$$X_{AD} = I_{AD}/I = 1 - \delta I_{AD}/I$$
 , (94)

or

$$X_{FD} = I_{FD}/I^* = 1 - \delta I_{FD}/I^*$$
 (95)

Note that respectively, I and I were used in the denominator of Eqs. (94) and (95) for internal consistency. Numerically δI_{AD} and δI_{FD} are identical; I and I however, can be different. Gerstl and Stacey indicate that the adjoint formulation is more accurate for perturbations closer to the detector, while the forward difference method gives better results for perturbations closer to the source. If both reference fluxes Φ and Φ are completely converged, Eqs. (94) and (95) will give identical results.

Explicit expressions for Eqs. (94) and (95) can be formulated. The procedure for the evaluations of $\delta I_{\mbox{AD}}$ and $\delta I_{\mbox{FD}}$ is similar to the derivation of the cross-section sensitivity profile and leads to the equations

$$\delta I_{AD} = \sum_{g=1}^{IGM} \left\{ \delta \Sigma_{x,T}^{g} \chi^{g} - \sum_{\ell=0}^{LMAX} \sum_{g'=1}^{g} \delta \Sigma_{s,\ell}^{g' \to g} \psi_{s,\ell}^{g' \to g} \right\} , \qquad (96)$$

and

$$\delta I_{\text{FD}} = \sum_{g=1}^{\text{IGM}} \left\{ \delta \Sigma_{x,T}^{g} \chi^{g} - \sum_{\ell=0}^{\text{LMAX}} \sum_{g'=g}^{\text{GMAX}} \delta \Sigma_{s,\ell}^{g \to g'} \psi_{\ell}^{gg'} \right\} . \tag{97}$$

3. APPLICATION OF SENSITIVITY THEORY TO UNCERTAINTY ANALYSIS

Sensitivity theory can be used to do an uncertainty analysis by introducing the concepts of cross-section covariance matrices and fractional uncertainties for SEDs. In this chapter we will explain how sensitivity profiles can be used in order to calculate the uncertainty of a reaction rate due to the uncertainties in the cross sections.

3.1 Definitions

Let I represent a design parameter depending on a multigroup cross-section set $\{\Sigma_i^{}\}$, so that

$$I = I(\Sigma_i) , \qquad (98)$$

where the index i can reflect a group, a partial cross section or a material.

The $\underline{\text{variance}}$ of I is defined as the expected value of the square of the difference between the actual value of I and the expected value of I, or

$$Var(I) = E\{(\delta I)^2\} = E\{(I - E\{I\})^2\} . \tag{99}$$

The standard deviation of I is the square root of the variance,

$$\Delta I \equiv [Var(I)]^{\frac{1}{2}} . \qquad (100)$$

The covariance of a and b is defined as

$$Cov(a,b) \equiv E\{\delta a \cdot \delta b\} \equiv \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} da.db.(a - E\{a\}).(b - E\{b\}).f(a,b),$$
(101)

where f(a,b) is a joint probability density function. A nonzero covariance between the quantities a and b indicates a mutual dependence on another quantity. Obviously we have

$$Cov(a,a) = Var(a) , \qquad (102)$$

since f(a,a) = 1.

A relative covariance element is defined by

3.2 Cross-Section Covariance Matrices

During the experimental evaluation of cross-section data, statistical errors arise from the fact that two similar experiments never agree completely. Also a systematic error reflects the fact that no equipment and no evaluation procedure is perfect, and that - among other factors - reference standards are used.

Cross-section covariance data describe the uncertainties in the multigroup cross sections and the correlation between those uncertainties. A nonzero nondiagonal covariance matrix element indicates that there was a common reason why an uncertainty in two different (e.g., partial cross sections or energy range) cross section was introduced. The evaluation procedure for covariance data is tedious and requires a sophisticated statistical analysis. 2,30,31

Multigroup cross-section covariance data are ordered in covariance matrices. Such a covariance matrix contains GMAX rows and GMAX columns, where GMAX is the number of energy groups. A covariance matrix can contain covariance data of a particular partial cross section with itself over an energy range , with a different cross section for the same element, or with a partial cross section of a different element.

It has become a common practice to include formatted uncertainty data in the ENDF/B data files. Even though the uncertainty files are

still missing for many materials in ENDF/B-V, extensive work is underway. Based on these uncertainty data, covariance libraries can be constructed. 32,33 A 30-group covariance library based on ENDF/B-V which contains most of the elements commonly used in reactor shielding has been constructed by Muir and LaBauve. 33 The covariance data in this library were processed into a 30-group format by using the NJOY code. 64,65 In this particular library, called COVFILS, the multigroup cross sections and the relative covariance matrices for 1 H, 10 B, C, 16 O, Cr, Fe, Ni, Cu, and Pb are included. Another covariance library was set up by Drischler and Weisbin. 32

3.3 Application of Cross-Section Sensitivity Profiles and Cross Section Covariance Matrices to Predict Uncertainties

Using first-order perturbation theory, the change in the integral response I, δI , as a consequence of small changes in Σ_i can be approximated by

$$\delta I \cong \sum_{i} \frac{\partial I}{\partial \Sigma_{i}} \delta \Sigma_{i} . \qquad (104)$$

We further have

$$Var(I) = E\{\delta I^2\} = E\{\sum_{i,j} \frac{\partial I}{\partial \Sigma_i} \frac{\partial I}{\partial \Sigma_j} \delta \Sigma_i \delta \Sigma_j\} , \qquad (105)$$

or

$$Var(I) = \sum_{i,j} \frac{\partial I}{\partial \Sigma_i} \frac{\partial I}{\partial \Sigma_j} Cov(\Sigma_i, \Sigma_j) . \qquad (106)$$

From Eqs. (100) and (106) it now becomes obvious that

$$\left[\frac{\Delta I}{I}\right]_{xs}^{2} = \sum_{i,j} P_{\Sigma_{i}}^{P} \sum_{j} \frac{Cov(\Sigma_{i},\Sigma_{j})}{\sum_{i}\Sigma_{j}} ,$$
(107)

where $P_{\sum_{i}}$ and $P_{\sum_{j}}$ are sensitivity profiles, and the subscript xs refers to reactor cross sections.

The concept of covariance data and sensitivity profiles leads to a simple way to evaluate the error in I. The first part in the summation requires sensitivity profiles and is highly problem dependent. The second part requires cross-section uncertainty information and is problem independent.

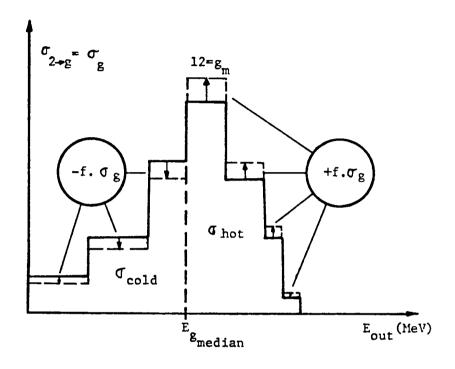
When trying to apply the theory presented here, very often covariance data will be missing for certain materials. One way of going around this problem would be to substitute the covariance file of the missing material by a covariance file for another material for which the cross sections are less well known. Other methods to eliminate this problem would be to make very conservative estimates. 16,17

The most conservative method would be to assume that the error in the cross section is the same for all groups and equal to the largest error for any one group. In that case it can be shown that 16,17

$$\begin{bmatrix} \frac{\Delta \mathbf{I}}{\mathbf{I}} \end{bmatrix}_{\text{max}} \leq \frac{\Delta \Sigma_{\mathbf{i}}}{\Sigma_{\mathbf{i}}} \quad \Sigma \mid P_{\Sigma_{\mathbf{i}}} \mid .$$
(108)

3.4 Secondary Energy Distribution Uncertainty Analysis

For evaluating uncertainties in the integral response due to uncertainties in the secondary energy distribution we will follow Gerstl's approach 44,46 and introduce the spectral shape uncertainty parameter for the hot-cold concept.


When the total number of secondaries scattered from group g' are held constant, then necessarily

$$\frac{\delta \Sigma_{\text{HOT}}}{\Sigma_{\text{HOT}}} = -\frac{\delta \Sigma_{\text{COLD}}}{\Sigma_{\text{COLD}}} \equiv f_{g}, \quad . \tag{109}$$

Therefore f_g , quantifies the uncertainty in the shape of the SEDs and is called the spectral shape uncertainty parameter (Fig. 4)⁴⁴.

It now becomes possible to express the relative change in integral response due to the uncertainty in the secondary energy distribution in a form similar to Eq. (107):

$$\left[\frac{\delta I}{I}\right]_{SED} = \sum_{g',g} P_{SED}^{g'g} \frac{\delta \Sigma_{g' \to g}}{\Sigma_{g' \to g}} .$$
(110)

$$\frac{\delta \sigma_g}{\sigma_g} = \begin{cases} +f & \text{if } g \leq g_m \\ -f & \text{if } g \geq g_m \end{cases}$$

Figure 4. Interpretation of the integral SED uncertainty as spectrum shape perturbations and definition of the spectral shape uncertainty parameter "f" (ref. 44)

Substituting Eqs. (87) and (109) in Eq. (110), it follows that

$$\left[\frac{\delta I}{I}\right]_{SED} = \sum_{g'} S_{SED}^{g'} f_{g'} .$$
(111)

Denote $f_{g'}$ by f_{j} , where the index j refers to a particular nuclear reaction, e.g., (n,2n), at specific incident energy g', and let f_{j} represent some different reaction/primary energy combination. Then the uncertainty in integral response corresponding to correlated uncertainties of all SEDs for a specific isotope is

$$\left[\frac{\Delta I}{I}\right]_{SED}^{2} = \frac{Var(I)}{I^{2}} = E\left\{\frac{(\delta I)^{2}}{I^{2}}\right\} = E\left\{\sum_{i,j} S_{SED}^{i} S_{SED}^{j} f_{i} f_{j}\right\}$$
(112)

or

$$\left[\frac{\Delta I}{I}\right]_{SED}^{2} = \sum_{i,j} S_{SED}^{i} S_{SED}^{j} Cov(f_{i}, f_{j}) . \qquad (113)$$

If the spectral shape uncertainty parameters for a specific particle interaction, identified by the subscript ℓ , are assumed to be fully correlated, it can be shown that 67

$$Cov(f_i, f_j)_{cor(+1)} = [Cov(f_i, f_i)]^{\frac{1}{2}} \cdot [Cov(f_j, f_j)]^{\frac{1}{2}},$$
 (114)

so that

$$\left[\frac{\Delta \mathbf{I}}{\mathbf{I}}\right]_{\ell} = \left|\sum_{\mathbf{g}'} \mathbf{S}_{SED}^{\ell, \mathbf{g}'} \left[\operatorname{Cov}(\mathbf{f}_{\ell \mathbf{g}'}, \mathbf{f}_{\ell \mathbf{g}'})\right]^{\frac{1}{2}}\right| \tag{115}$$

or,

$$\left[\frac{\Delta I}{I}\right]_{\ell=g'} |S_{SED}^{\ell,g'}| \left[Var(f_{\ell g'})\right]^{\frac{1}{2}} .$$
(116)

If N independent measurements of the same SED are available, the values for $Var(f_{\ell g'})$ can easily be evaluated. For each cross-section evaluation, weights, w_n , are assigned, then

$$f_g^n$$
, = $\frac{\sigma_{HOT}^n - \sigma_{COLD}^n}{E\{\sigma\}}$, for $n = 1, 2...N$ (117)

with

$$E\{f_{g'}^{n}\} = \sum_{n=1}^{N} w_{n} f_{g'}^{n} = 0 .$$
 (118)

The variance of fg, will be

$$Var(f_{g'}) = E\{f_{g'}^2\} = \sum_{n=1}^{N} w_n \frac{(\sigma_{HOT}^2 - \sigma_{COLD}^2)}{[E\{\sigma\}]^2}$$
(119)

 $Var(f_g)$ is called the <u>fractional uncertainty for the secondary energy</u> <u>distribution</u> and is identified by the symbol F. A short program which evaluates the values of F has been written by Muir; ⁶⁶ the results for the 30-group neutron structure ⁴⁵ is shown in Table II.

61

TABLE II MEDIAN ENERGIES (E', IN MEV) AND FRACTIONAL UNCERTAINTIES (F) FOR SECONDARY ENERGY DISTRIBUTIONS AT INCIDENT NEUTRON ENERGIES \mathbf{E}_0

(Ref. 45)

¹² c		¹⁶ 0		Cr		Fe		Ni		Cu		W		
Eo	E'm	F	E'm	<u>F</u>	E'm	F	E'm	F	E '	F	E'm	F	E'm	F
16.0	14.71	0.071	14.62	0.088	3.27	0.17	4.49	0.11	14.95	0.13	3.42	0.11	1.86	0.12
14.25	13.00	0.059	13.33	0.072	8.65	0.15	5.99	0.10	13.97	0.11	3.51	0.10	2.17	0.10
12.75	11.71	0.054	11.93	0.062	11.42	0.13	11.17	0.10	12.67	0.11	4.30	0.10	1.91	0.10
11.00	9.77	0.060	9.82	0.057	10.48	0.11	10.57	0.09	10.91	1.10	10.42	0.09	1.57	0.09
8.90	7.35	0.048	7.90	0.050	8.79	0.09	8.77	0.08	8.85	0.09	8.81	0.08	1.24	0.08
6.93	5.96	0.035	6.04	0.030	6.83	80.0	6.86	0.07	6.88	0.08	6.86	0.07	6.66	0.07
4.88	4.46	0.010	4.57	0.010	4.81	0.07	4.81	0.07	4.83	0.07	4.82	0.07	4.83	0.07
3.27	2.63	0.010	3.09	0.010	3.21	0.06	3.21	0.06	3.24	0.06	3.22	0.06	3.25	0.06
2.55	2.16	0.010	2.31	0.010	2.48	0.05	2.49	0.06	2.49	0.05	2.50	0.06	2.51	0.06
1.99	1.73	0.005	1.79	0.010	1.93	0.04	1.93	0.06	1.94	0.04	1.94	0.06	1.96	0.05
1.55	1.34	0.005	1.35	0.010	1.50	0.03	1.51	0.05	1.50	0.03	1.51	0.05	1.51	0.05
1.09	0.95	0.005	0.94	0.010	1.05	0.02	1.06	0.03	1.06	0.02	1.06	0.03	1.06	0.05
0.66	0.57	0.005	0.60	0.010	0.64	0.02	0.63	0.02			0.64	0.02	0.66	0.04
0.40	0.35	0.005	0.34	0.010			0.39	0.02			0.39	0.02	0.38	0.03
0.24	0.21	0.005	0.22	0.010							0.24	0.02	0.22	0.02
0.13	0.12	0.005	0.12	0.010							0.12	0.02	0.12	0.01

3.5 Overall Response Uncertainty

The overall response uncertainty will be of the form

$$\frac{\left[\Delta I\right]}{\left[\frac{1}{I}\right]} = \sqrt{\left[\frac{\Delta I}{I}\right]_{SED}^{2} + \left[\frac{\Delta I}{I}\right]_{XS}^{2}}$$
(120)

where

$$\left[\frac{\Delta I}{I}\right]_{SED}^{2} = \sum_{i} \left[\frac{\Delta I}{I}\right]_{SED,i}^{2}$$
(121)

and

$$\left[\frac{\Delta I}{I}\right]_{XS}^{2} = \sum_{i,k} \left[\frac{\Delta I}{I}\right]_{XS,i,k}^{2} . \tag{122}$$

The index i reflects the uncertainties in the various materials. It was assumed that the effects from SED uncertainties for all possible reactions which generate secondaries are uncorrelated. It is also assumed that the uncertainties due to the SEDs are uncorrelated with other uncertainties due to reaction cross sections (XS), and that the uncertainties between the reaction cross sections themselves are uncorrelated.

Remarks

- 1. To be absolutely correct, a term reflecting the uncertainty in the secondary angular distribution should be included. Due to the difficulty in generating uncertainty data from ENDF/B-V in the proper format, we do not include that term.
- 2. In order to evaluate the sensitivity profiles, we should keep in mind that the form of the sensitivity profile will depend on the particular reaction cross section for which a response is desired (Table I).

4. SENSIT-2D: A TWO-DIMENSIONAL CROSS-SECTION AND DESIGN SENSITIVITY

AND UNCERTAINTY ANALYSIS CODE

4.1 Introduction

The theory explained in the previous chapters has been incorporated in a two-dimensional cross-section and design sensitivity and uncertainty analysis code, SENSIT-2D. This code is written for a CDC-7600 machine and is accessible via the NMFECC-network (National Magnetic Fusion Energy Computer Center) at Livermore. SENSIT-2D has the capability to perform a standard cross-section and a vector cross-section sensitivity and uncertainty analysis, a secondary energy distribution sensitivity and uncertainty analysis, a design sensitivity analysis and an integral response (e.g., dose rate) sensitivity and uncertainty analysis. As a special feature in the SENSIT-2D code, the loss term of the sensitivity profile can be evaluated based on angular fluxes and/or flux moments.

SENSIT-2D is developed with the purpose of interacting with the ${\rm TRIDENT\text{-}CTR}^6$ code, a two-dimensional discrete-ordinates code with triangular meshes and an r-z geometry capability, tailored to the needs of the fusion community. Angular fluxes generated by other 2-D codes, such as DOT, TWODANT, TRIDENT, etc., cannot be accepted by SENSIT-2D due to the different format. The unique features of TRIDENT-CTR (group dependent quadrature sets, r-z geometry description, triangular meshes) are reflected in SENSIT-2D. Coupled neutron/gamma-ray studies can be performed. In contrast with TRIDENT-CTR however, SENSIT-2D is restricted to the use of equal weight (EQn) quadrature sets, 68 symmetrical with respect to the four quadrants. Upscattering is not allowed.

Many subroutines used in SENSIT-2D are taken from SENSIT⁴⁶ or TRIDENT-CTR. SENSIT-2D is similar in its structure to SENSIT, but is an entirely different code. Unlike SENSIT, SENSIT-2D does not use the BPOINTR⁶⁹ package for dynamical data storage allocation, but rather uses a sophisticated pointer scheme in order to allow variably dimensioned arrays. As soon as an array is not used any more, its memory space becomes immediately available for other data. SENSIT-2D does not include a source sensitivity analysis capability and cannot calculate integral responses based on the adjoint formulation. This has the disadvantage that no check for internal consistency can be made. Therefore, other ways have to be found in order to determine whether the fluxes are fully converged. One way for doing so would be to calculate the integral response based on the adjoint formulation while performing

the adjoint TRIDENT-CTR or the adjoint TRDSEN run, and compare with the integral response based on the forward calculation.

SENSIT-2D requires input files which contain the angular fluxes at the triangle midpoints multipled by the corresponding volumes, and the adjoint angular fluxes at the triangle midpoints. A modified version of TRIDENT-CTR, TRDSEN, was written by T. J. Seed⁷⁰ to generate these flux files. A summary of these modifications was provided by T. J. Seed and is included as Appendix B. After a TRIDENT-CTR run, the TRDSEN code will use the dump files generated by TRIDENT-CTR, go through an extra iteration, and write out the angular fluxes in a form compatible with SENSIT-2D. Both SENSIT-2D and TRDSEN use little computing time compared with the time required by TRIDENT-CTR.

The features of SENSIT-2D are summarized in Table III. The SENSIT-2D source code is generously provided with comment cards and is included as Appendix A.

4.2 Computational Outline of a Sensitivity Study

A flow chart (Fig. 5) illustrates the outline for a two-dimensional sensitivity and uncertainty analysis. From this figure it becomes immediately apparent that a sensitivity analysis requires elaborate data management. The data flow can be divided into three major parts: a cross-section preparation module, in which the cross sections required by TRIDENT-CTR and SENSIT-2D are prepared, a TRIDENT-CTR/TRDSEN block,

TABLE III: SUMMARY OF THE FEATURES OF SENSIT-2D (PART I)

SENSIT-2D: A Two-Dimensional Cross-Section and Design Sensitivity and Uncertainty Analysis Code

Code Information:

- * written for the CDC-7600
- * typical storage, 20K (SCM), 80K (LCM)
- * number of program lines, 3400
- * used with the TRIDENT-CTR transport code
- * typical run times, 10-100 sec

Capabilities:

- computes sensitivity and uncertainty of a calculated integral response (e.g., dose rate) due to input cross sections and their uncertainties
- * vector cross-section sensitivity and uncertainty
 analysis
- * design sensitivity analysis
- * secondary energy distribution (SED) sensitivity and uncertainty analysis

TABLE III: SUMMARY OF THE FEATURES OF SENSIT-2D (PART 2)

SENSIT-2D

TRIDENT-CTR Features Carried Over into SENSIT-2D:

- * x-yor r-z geometry
- * group-dependent S_n order
- * triangular spatial mesh

Unique Features:

- * developed primarily for fusion problems
- # group dependent quadrature order and triangular mesh
- * can evaluate loss-term of sensitivity profile based
 on angular fluxes and/or flux moments

Current Limitations:

- * can only interact with TRIDENT-CTR transport code
- * not yet implemented on other than CDC computers
- * based on first-order perturbation theory
- * upscattering not allowed

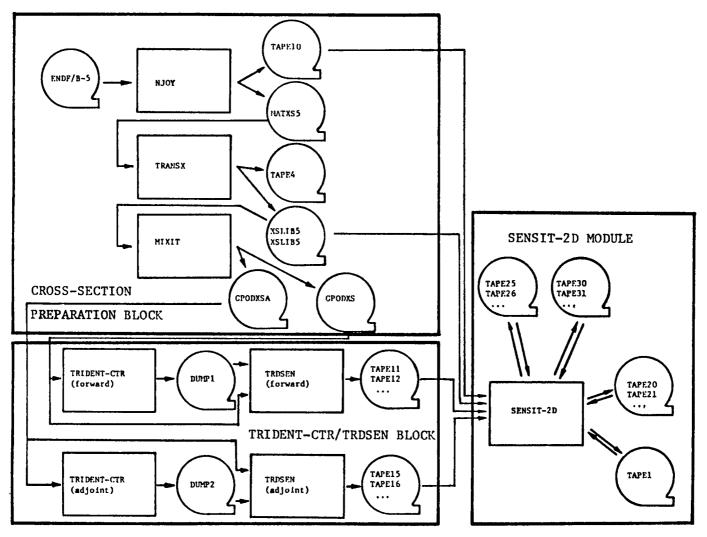


Figure 5. Computational outline for a two-dimensional sensitivity analysis with SENSIT-2D

where the angular fluxes in a form compatible with SENSIT-2D are generated, and a SENSIT-2D module, which performs the calculations and manipulations necessary for a sensitivity and uncertainty analysis.

4.2.1 Cross-section preparation module

There are many possible ways to generate the multigroup cross-section tables required by SENSIT-2D and TRIDENT-CTR. The flow chart of Fig. 5 illustrates just one of these possibilities. All the codes mentioned here are accessible via the MFE machine. Basically, three codes are required: NJOY, TRANSX, and MIXIT. Starting from the ENDF/B-V data file, the NJOY code system ⁶⁴ generates a multigroup cross-section library (MATXS5) and a vector cross-section and covariance library (TAPE10). A covariance library can be constructed by using the ERROR module in the NJOY code system. ³³

From the multigroup cross-section library (MATXS5), the desired isotopes can be extracted by the TRANSX code ⁷² and will be written on a file with the name XSLIBF5. The MIXIT code ⁷³ can make up new materials by mixing isotopes from the XSLIBF5 library. The cross sections used in SENSIT-2D have to be written on a file called TAPE4. The cross sections used in TRIDENT-CTR and TRDSEN will be on file GEODXS. SENSIT-2D and TRIDENT-CTR include the option to feed in cross sections directly from cards.

4.2.2 The TRIDENT-CTR and TRDSENS block

SENSIT-2D requires regular angular fluxes at the triangle centerpoints, multipled by the corresponding volumes, and adjoint angular fluxes at the triangle centerpoints. TRIDENT-CTR does not write out angular fluxes. Therefore the TRDSEN version of TRIDENT-CTR was written by SEFD. TRDSEN makes use of the flux moment dump files, generated by TRIDENT-CTR. These dump files will be the starting flux guesses for TRDSEN. TRDSEN will perform one more iteration and write out the angular fluxes. In this discussion we will represent the dump file families by DUMP1 for the regular flux moments, and DUMP2 for the angular flux moments. Except for a different starting guess option, TRDSEN requires the same input as TRIDENT-CTR.

4.2.3 The SENSIT-2D module

The SENSIT-2D code performs a sensitivity and uncertainty analysis. When vector cross sections and their covariances are required, they have to be present on a file with the name TAPE10. If the cross section data are read from tape, they have to be written on a file called TAPE4. The regular angular fluxes at the triangle centerpoints multiplied by the corresponding volumes (TAPE11, TAPE12,...) and the adjoint angular fluxes at the triangle centerpoints (TAPE15, TAPE16,...) can be quite voluminous. Writing out large files can be troublesome on the MFE

machine when there is a temporary lack of continuous disk space. Therefore TRIDENT-CTR and SENSIT-2D have the built-in option to specify the maximum number of words to be written on one file. This limit has to be set high enough to ensure that all the flux data related to one group can be written on one file. 1 000 000 words per file is usually a practical size and is the default in TRIDENT-CTR.

SENSIT-2D can generate four more file families:

- TAPE1, which contains the regular scalar fluxes at the triangle centerpoints.
- TAPE20, TAPE21,..., which are random access files and contain the adjoint angular fluxes at the triangle centerpoints,
- 3. TAPE25, TAPE26,..., containing the regular flux moments at the triangle centerpoints, multipled by the corresponding volumes,
- 4. TAPE30, TAPE31,..., which contain the adjoint angular fluxes at the triangle midpoints.

SENSIT-2D has the option of not generating those file families, but using those created by a former run. The flux moments are constructed from the angular fluxes according to the formula

$$\Phi_{\ell}^{k}(x,y) = \sum_{m=1}^{MN} w_{m} R_{\ell}^{k}(\mu_{m},\phi_{m}) \Phi_{m}(x,y) ,$$

where the w_m 's are the quadrature weights, the R_{ℓ}^k 's the spherical harmonics functions, and MN the total number of angular fluxes.

4.3 The SENSIT-2D Code

In this section the structure of the SENSIT-2D code, its options and capabilities will be explained in more detail. SENSIT-2D is a powerful sensitivity and uncertainty analysis code. The description of this code from the user's point of view is given in the user's manual. 71

4.3.1 Flow charts

The overall data flow within the SENSIT-2D module is repeated in Fig. 6. A simplified flow chart is illustrated in Fig. 7. The main parts of the flow chart include these steps:

- * The control parameters and the geometry related information are read in.
- * The quadrature sets and the spherical harmonics functions required to generate the flux moments are constructed.
- * The adjoint angular fluxes at the triangle centerpoints are written on random access files, flux moments are generated and scalar fluxes are extracted.
- * A detector sensitivity analysis is performed; if desired an uncertainty analysis is done.
- The χ 's and ψ 's which form the essential parts of the cross-section and secondary energy distribution sensitivity profiles are calculated for each perturbed zone and for the sum over all perturbed zones.

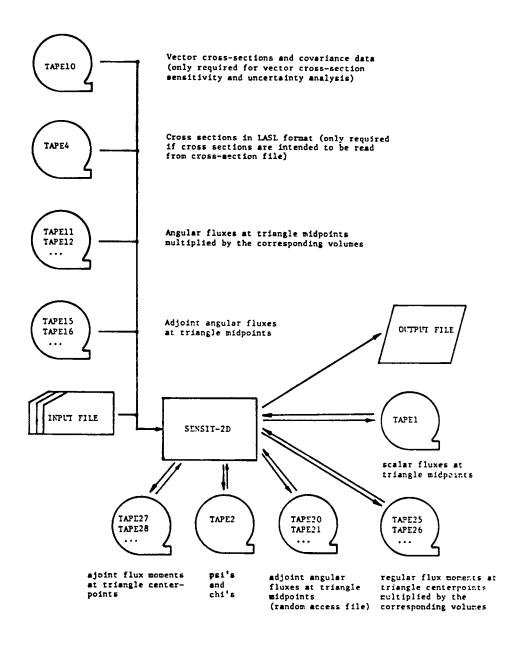


Figure 6. Data flow for the SENSIT-2D module

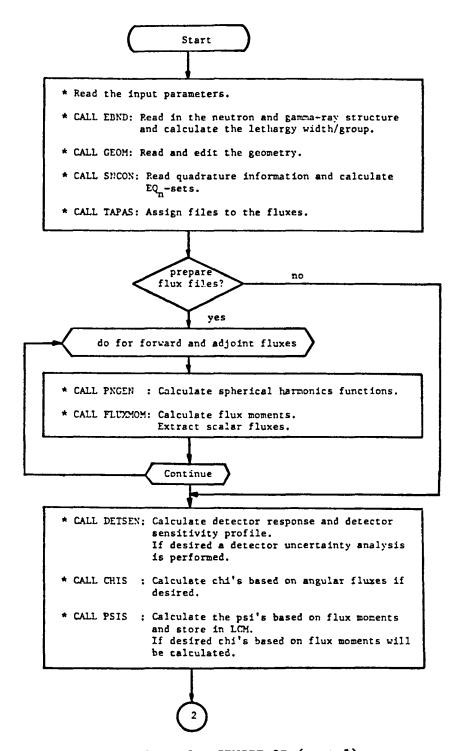


Figure 7. Flow chart for SENSIT-2D (part 1)

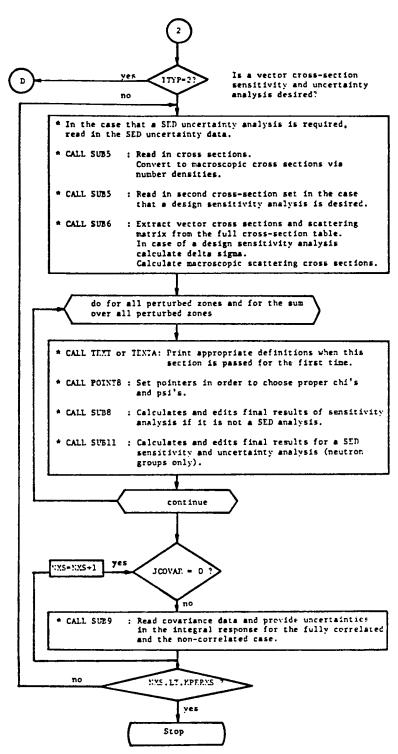


Figure 7. Flow chart for SENSIT-2D (part 2)

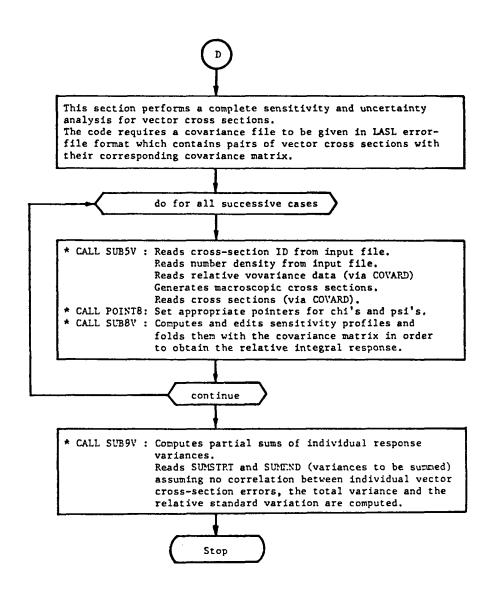


Figure 7. Flow chart for SENSIT-2D (part 3)

Up to this point, all the subroutines used are different from those used in the SENSIT code. The remaining calculations are done with SENSIT subroutines.

- Cross sections are read in.
- * Vector cross sections are extracted.
- * Sensitivity profiles are calculated used in the appropriate ψ 's and χ 's.
- * If desired to do so, an uncertainty analysis is performed.
- * A vector cross-section sensitivity and uncertainty analysis can be performed and partial sums of individual response variances can be made.

4.3.2 Subroutines used in SENSIT-2D

Table IV summarizes the subroutines used in SENSIT-2D and indicates their origin in case they were taken over or adapted from another code. The essential difference between SENSIT and SENSIT-2D is the way that the geometry is described and how the ψ 's and the χ 's are calculated. Basically, all the subroutines are called from the main program with a few exemptions when subroutines are called from other subroutines. The subroutines for SENSIT-2D which were not taken over from other codes will now be described. For the SENSIT subroutines we refer to the user's manual.

TABLE IV: LIST OF SUBROUTINES USED IN SENSIT-2D

Name Subroutine	Origin	If Taken From Another Code, Were Changes Made?
EBND	SENSIT-2D	-
GEOM	SENSIT-2D	-
SNCON	TRIDENT-CTR	yes
TAPAS	SENSIT-2D	-
PNGEN	TRIDENT-CTR	yes
FLUXMOM	SENSIT-2D	-
DETSEN	SENSIT-2D	-
CHIS	SENSIT-2D	-
POINT4B	SENSIT-2D	-
PSIS	SENSIT-2D	-
POINT8	SENSIT-2D	-
SUB5	SENSIT	yes
SUB6	SENSIT	no
TEXT	SENSIT	no
TESTA	SENSIT	no
SUB8	SENSIT	yes
SUB11	SENSIT	yes
SUB8V	SENSIT	no
SUB9	SENSIT	no
SUB9V	SENSIT	no
SUB5V	SENSIT	no
COVARD	SENSIT	no
SETID	SENSIT	no

- 1. Subroutine EDNB. Neutron and gamma-ray energy group structures are read in from cards and the lethargy widths for each group are calculated.
- 2. Subroutine GEOM. Geometry related information is read in and edited.
- 3. Subroutine SNCON. This routine was taken and adapted from the TRIDENT-CTR code. The EQ $_{\mathbf{n}}$ cosines and weights are calcualted. The quadrature information is edited whenever IOPT is 1 or 3.
- 4. Subroutine TAPAS. Files are assigned to the various flux data. The filenames for the angular fluxes are read from the input file. Those filenames will have to be of the form TAPEXY, where XY will be the input information. Filenames in the same format will then be assigned to the adjoint angular fluxes (on sequential files in this case), and the flux moments. The maximum number of words to be written on each file is controlled by the input parameter Groups will never be broken up between different files. 5. Subroutine PNGEN. This subroutine originates from the TRIDENT-CTR code. Spherical harmonics functions, used for constructing flux moments, are calculated. For the adjoint flux moment calculation the arrays related to the spherical harmonics will be rearranged to take into account the fact that the numbering of the angular directions was not symmetric with respect to the four quadrants in TRIDENT-CTR.
- 6. Subroutine FLUXMOM. The adjoint angular fluxes will be rewritten on a random access file. The direct and adjoint flux

moments are constructed and written on sequential files. In the case that the input parameter IPREP1, it is assumed that those manipulations are already performed in an earlier SENSIT-2D run. In this case one has to make sure that the parameter MAXWRD was not changed. While creating the regular flux moments, the scalar fluxes will be extracted and written on a file named TAPE1.

- 7. Subroutine DETSEN. From the scalar fluxes, the integral response for each detector zone is read from input cards. The detector sensitivity profile is calculated and edited. In the case that the input parameter DETCOV equals one, a covariance matrix has to be provided, subroutine SUB9 will be called and a detector response uncertainty analysis is performed.
- 8. Subroutine CHIS. The χ 's are calculated for each perturbed zone and for the sum over all perturbed zones based on angular fluxes. In the case that the parameter ICHIMOM equals one, this subroutine will be skipped and the χ 's will be calculated based on flux moments via the ψ 's.
- 9. Subroutine POINT4B. This subroutine sets LCM pointers for the flux moments which will be used in SUB4B.
- 10. Subroutine PSIS. The ψ 's are calculated for each of the perturbed zones and for the sum over all perturbed zones based on flux moments. In the case that ICHIMOM is not equal to zero also the χ 's will be calculated from flux moments. In the case that parameter IPREP equals one, the ψ 's will be read in from file TAPE3.

11. Subroutine POINT8. This subroutine sets pointers for the appropriate χ 's and ψ 's, used in subroutine SUB8.

5. COMPARISON OF A TWO-DIMENSIONAL SENSITIVITY ANALYSIS WITH A ONE DIMENSIONAL SENSITIVITY ANALYSIS

Before applying SENSIT-2D to the FED (fusion engineering device) inboard shield design, currently in development at the General Atomic Company, it was necessary to make sure that SENSIT-2D will provide the correct answers. One way for checking on the performance of SENSIT-2D is to analyze a two-dimensional sample problem, which is one-dimensional from the neutronics point of view, and then to compare the results with a one-dimensional analysis. In this case ONEDANT⁷⁴ and SENSIT⁴⁶ are used for the one-dimensional study, while TRIDENT-CTR, TRDSEN, and SENSIT-2D are used for the two-dimensional analysis.

Two sample problems will be studied. The first sample problem uses real cross-section data, while the second sample problem utilizes artificial cross sections. Computing times, the influence of the quadrature set order, and the performance of the angular fluxes versus the flux moments option for the calculation of the chi's will be discussed.

5.1 Sample Problem #1

The first sample problem is a mock-up of a cylindrical geometry (Fig. 8). There are four zones present: a source zone (vacuum), a perturbed zone (iron), a zone made up of 40% iron and 40% water, and a detector zone (copper). The reaction rate of interest is the heat generated in the copper region. The source was assumed isotropic and had a neutron density of one neutron per cubic centimeter (1 neutron/cm³). The source neutrons are emitted at 14.1 MeV (group 2). The left boundary is reflecting, and on the right there is a vacuum boundary condition. Thirty neutron groups were used with a third order of anisotropic scattering. The cross sections were generated using the TRANSX⁷² code. The energy group boundaries are reproduced in Table V.

In the two-dimensional model (TRIDENT-CTR) two bands--each 0.5-cm wide--are present. In order to be consistent with the one-dimensional analysis the upper and the lower boundaries were made reflective (Fig. 9). Each band is divided into 35 triangles (5 triangles for the source zone, 10 triangles for each of the other three zones). The automatic mesh generator in TRIDENT-CTR was used. The convergence precision was set to 10^{-3} . A convergence precision of 10^{-3} means here that the average scalar flux for any triangle changes by less than 0.1% between two consecutive iterations. A similar criterion is used in ONEDANT. The calculation is performed with the built-in EQ_n -8 (equal weight) quadrature set. The mixture densities are given in Table VI. For the adjoint calculation the source is in zone IV and consists of the copper

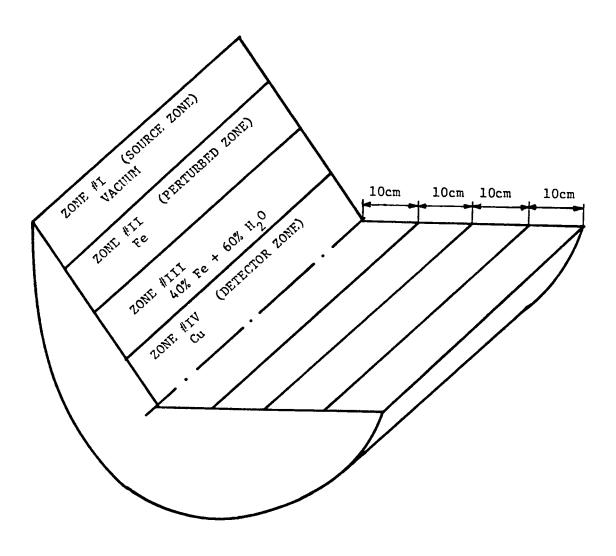
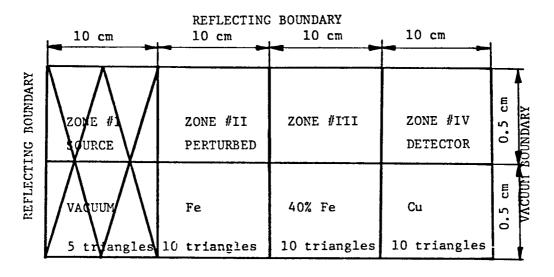



Figure 8. Cylindrical geometry representation for sample problem #1

TABLE V: 30-GROUP ENERGY STRUCTURE

Neutrons					
E-Upper (MeV)	Group	E-Lower (MeV)	E-Upper (MeV)	Group	E-Lower (McV)
1.700+01	1	1.500+01	6.140-05	24	2.260-05
1.500+01	2	1.350+01	2.260-05	25	8.320-06
1.350+01	3	1.200+01	8.320-06	26	3.060-06
1.200+01	4	1.000+01	3.060-06	27	1.130-06
1.000+01	5	7.790+00	1.130-06	28	4.140-07
7.790+00	6	6.070+00	4.140-07	29	1.520-07
6.070+00	7	3.680+00	1.520-07	30	1.390-10
3.680+00	8	2.865+00			
2.865+00	9	2.232+00			
2.232+00	10	1.738+00			
1.738+00	11	1.353+00			
1.353+00	12	8.230-01			
8.230-01	13	5.000-01			
5.000-01	14	3.030-01			
3.030-01	15	1.840-01			
1.840-01	16	6.760-02			
6.760-02	17	2.480-02			
2.480-02	18	9.120-03			
9.120-03	19	3.350-03			
3.350-03	20	1.235-03			
1.235-03	21	4.540-04			
4.540-04	22	1.670-04			
1.670-04	23	6.140-05			

REFLECTING BOUNDARY

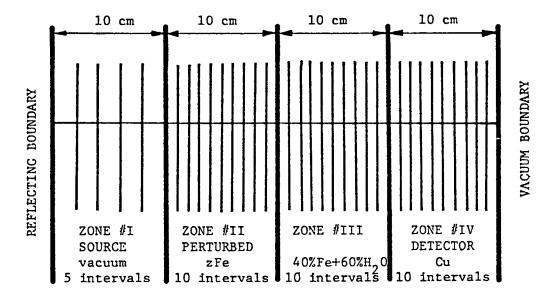
30 neutron groups

neutron source: 1 neutron / cm 3 in group2 (14.1 MeV)
P-3, EQ $_n$ -8 : third-order of anisotropic scattering
8th-order equal weight quadrature set
response function:copper kerma factor in zone #IV
convergence precision : 10^{-3}

Figure 9. Two-dimensional (TRIDENT-CTR) representation for sample problem #1

TABLE VI. ATOM DENSITIES OF MATERIALS

		Atoms/m ³			
ZONE #1	Vacuum				
ZONE #II	Fe	8.490 + 28 ^a			
ZONE #IIIb	Fe	3.396 + 28			
	Н	4.020 + 28			
	0	1.900 + 28			
ZONE #IV	Cu	8.490 + 28			


 $a 8.490 + 28 = 8.49 \times 10^{28}$

 $^{^{\}rm b}$ 40 vol % Fe and 40 vol % water.

kerma factors. The response is calculated in that case in zone I. It was found that the adjoint calculation required more iterations and time in order to reach convergence. Originally the forward calculation was done using 20 triangles per band. The adjoint problem, however, did not converge. In the evaluation process of the kerma factors, the kermas for some groups are made negative in order to satisfy energy balance. Making those negative sources zero in the TRIDENT-CTR run did not lead to any improvement. Subsequently, 35 triangles per band were used. When the negative sources were set to zero convergence was reached. Ignoring the negative kerma factors leads to a 20% increase in the total heating. The forward calculation required about 11 minutes cpu time (central processor unit time on a CDC-7600), while the adjoint calculation required about 13.5 minutes. Generating the angular fluxes using the TRDSEN code required about 20 seconds of cpu time for each case.

TRDSEN does on extra iteration in order to generate the angular fluxes. The convergence criterion in TRIDENT-CTR is based on the scalar fluxes, and therefore one extra iteration in TRDSEN should be adequate. However, restarting TRIDENT-CTR with the flux moments as starting guesses, revealed that for some groups two extra iterations were necessary to reach a convergence precision of 10^{-3} . No explanation for this could be found.

The one-dimensional model (ONEDANT) contains 35 intervals (5 for the source zone, 10 intervals for each of the remaining zones). The one-dimensional description for the forward problem is summarized in

30 neutron groups

neutron source: 1 neutron / cm³ in group 2 (14.1MeV0

P-3, S-8 : third-order of anisotropic scattering

8th-order Gaussian quadrature set

detector response: copper kerma factor in zone #IV

convergence precision: 10⁻⁴

Figure 10. One-dimensional (ONEDANT) representation for sample problem #1

Fig. 10. Again it was found that the use of negative sources in the adjoint calculation caused difficulties with respect to the convergence. In that case, groups 18 and 19 triggered the message "TRANSPORT FLUXES BAD"; groups 4, 5, 6, 7, and 19 did not converge (max. number of inner iterations 300/group). However, the overall heating in the copper region was within 0.1% of the heating calculated by the forward run. A coupled neturon/gamma-ray calculation (30 neutrons groups and 12 gamma-ray groups) in the adjoint mode led to some improvement. In that case, only group 2 did not converge. The required convergence precision in the ONEDANT runs was set to 10⁻⁴. The built-in S-8 Gaussian quadrature sets were used. In order to be consistent with the TRIDENT-CTR calculations, the negative sources in the adjoint case were set to zero, even though this did not seem to be necessary. Each run required about six seconds of cpu time.

A standard cross-section sensitivity analysis (the cross sections in zone II are perturbed) was performed using the SENSIT code and the SENSIT-2D code. A comparison between the SENSIT and the SENSIT-2D results revealed that SENSIT⁷⁶ does not rearrange the angular fluxes correctly (in cylindrical geometry). To correct this error, a shuffling routine which takes case of this deficiency was then built into SENSIT. The SENSIT results are in good agreement with those obtained from SENSIT-2D. The flux moments versus the angular flux option was tested out for the calculation of the loss term. Again there is good agreement. Finally, an uncertainty analysis was performed for the heating in the copper zone. The SENSIT-2D analysis matches the SENSIT analysis.

5.1.1 TRIDENT-CTR and ONEDANT results

A comparison of the heating in the copper region (zone IV) between TRIDENT-CTR (and SENSIT-2D) and ONEDANT (and SENSIT) is summarized in Table VII a. The adjoint calculations yield a 20% higher heating rate due to the fact that the negative kerma factors were set equal to zero. The one-dimensional and the two-dimensional analysis are in agreement. The computing times for those various runs are given in Table VII b.

Each ONEDANT run requires about 8 seconds of total computing time (LTSS time), whereas it takes about 12 minutes to do the TRIDENT-CTR runs. The TRIDENT-CTR runs were done with a convergence precision of 10^{-3} , whereas for the ONEDANT runs a convergence precision of 10^{-4} was specified. In order to obtain the same convergence precision in TRIDENT-CTR about eight additional minutes of cpu time are required. It was found that a forward coupled neutron/gamma-ray calculation (30 neutron groups and 12 gamma-ray groups) required only 8 minutes of computing time with TRIDENT-CTR (convergence precision 10^{-3}). An explanation for this paradoxial behavior is related to the fact that $\sigma_{\rm S}/\sigma_{\rm T}$ has a different (smaller) value in a coupled neutron/gamma-ray calculation.

The flux moments generated by TRIDENT-CTR and ONEDANT were compared. In the ONEDANT geometry the angular fluxes are assumed to be symmetrical with respect to the z-axis, 75 so that the odd flux moments $(\phi_1^0, \phi_2^1, \phi_3^0, \text{ and } \phi_3^2)$ vanish. Since TRIDENT-CTR performs a real two-dimensional calculation the odd moments will not be zero in that case. In our sample problems there is still symmetry with respect to the

TABLE VIIa. COMPARISON OF THE HEATING IN THE COPPER REGION CALCULATED BY ONEDANT AND TRIDENT-CTR

	FORWARD	ADJOINT
ONEDANT ^a	2.37382 + 7	2.40541 + 7
ONEDANT	2.01189 + 7	2.01882 + 7
TRIDENT-CTR	2.01175 + 7	2.39263 + 7
SENSIT	2.01011 + 7	2.40541 + 7
SENSIT-2D	2.01098 + 7	

^a negative KERMA factors set to zero

TABLE VIIb. COMPUTING TIMES ON A CDC-7600 MACHINE

	CPU-TIME ^a	I/O TIME ^b	LTSS TIMEC
ONEDANT FORWARD	5.80 sec.	1.87 sec.	7.65 sec.
ONEDANT ADJOINT	6.09 sec.	1.82 sec.	7.97 sec.
TRIDENT-CTR FORWARD			13.5 minutes
TRIDENT-CTR ADJOINT			11.1 minutes
SENSIT	4.92 sec.	0.55 sec.	6.08 sec.
SENSIT-2D	8.50 sec.	9.02 sec.	17.84 sec.

^a central processor unit time

b input/output time

C Livermore time sharing system time (total computing time)

z-axis. For that reason, the odd moments in TRIDENT-CTR will have opposite signs in band one and band two. For some zones and some groups this was not completely the case. There was about 30% difference in the absolute values of some flux moments in band one and band two, which indicates that the problem was not in a sense truly converged. The convergence criteria in ONEDANT and TRIDENT-CTR test only for the scalar fluxes between two consecutive iterations. Even when the convergence criteria are satisfied in both codes, a true convergence of the angular flux is not guaranteed. The even moments in band one are exactly the same as those for band two. Because the contribution of the odd moments is small compared to the contribution of the even moments (about one thousandth), the problem can be considered fully converged.

The scalar flux moments calculated by TRIDENT-CTR and ONEDANT are in very good agreement. The higher-order moments are different. Since TRIDENT-CTR and ONEDANT do not use the same coordinate system, they do not calculate the same physical quantity for the higher-order flux moments. As long as TRIDENT-CTR is consistent with SENSIT-2D, and ONEDANT consistent with SENSIT, the results from the one-dimensional sensitivity analysis should match those obtained from a two-dimensional sensitivity analysis.

5.1.2 SENSIT and SENSIT-2D results for a standard cross-section sensitivity analysis

A standard cross-section sensitivity analysis was performed using

SENSIT and SENSIT-2D. The sensitivity of the heating in zone IV to the cross sections in zone II was studied. SENSIT-2D requires about three times more computing time than SENSIT in this case (Table VII b). The main part of the calculation involves the evaluation of the ψ 's (gain term). A complete sensitivity and uncertainty analysis may involve several SENSIT (or SENSIT-2D) runs. Thus an option which allows one to save the ψ 's has been built into SENSIT-2D. It is obvious that the computing time required in SENSIT-2D is negligible compared to the computing time required for the forward and adjoint TRIDENT-CTR calculations.

The partial and the net sensitivity profiles calculated by SENSIT and SENSIT-2D are reproduced in TABLES VIII a and VIII b. It can be concluded that the SENSIT-2D results are in good agreement with those obtained by SENSIT. Note that the absorption cross section is negative for groups 2 and 3. A negative absorption cross section does not necessarily indicate that errors were made during the cross section processing. There are various ways to define an absorption cross section, and a controversy about a commonly agreed on definition is currently in progress. What is called an absorption cross section in a transport code is not truly an absorption cross section but the difference between the transport cross section and the outscattering $(\sigma_a^g = \sigma_a^g - \Sigma \sigma_a^{g \to g'})$. Note that groups 2 and 3 are the main contributors to the integral sensitivity.

It was mentioned earlier that the χ 's can be calculated based on flux moments or based on angular fluxes according to

TABLE VIIIa: PARTIAL AND NET SENSITIVITY PROFILES FOR THE ONE-DIMENSIONAL ANALYSIS (Part 1)

		DEFINITIONS OF SENSIT SENSITIVITY PROFILE HOMENCLATURE
BAXS	•	SENSITIVITY PROFILE PER DELTA-U FOR THE ADSORPTION CROSS-SECTION (TRIGEN FROM POSITION THA IN INPUT CROSS-SECTION TRULES), PURE LUSS TERM
NU-FISS	•	SENSITIVITY PROFILE PER DELTA-U FOR THE CROSS SECTION IN POSITION INALLY IN INPUT XS-TABLES, LATER IS USUALLY NU-TIMES THE FISSION CROSS SECTION. PURE LOSS TERM
sxs	•	PARTIAL SCHSITIVITY PROFILE PER DELTA-U FOR THE SCRITTERING CRUSS-SECTION (COMPUTED FOR EACH ENERGY GROUP AS A DIAGONAL SUM FROM INPUT XS-TABLES), LOSS TERM ONLY
TXS	•	SENSITIVITY PROFILE PER DELTA-U FOR THE TOTAL CHOSS SECTION (AS GIVEN IN POSITION INT IN IMPUT CROSS-SECTION TALLES), PURE LOSS TERM
H-GAIN	•	PARTIAL SENSITIVITY PROFILE PER DELTA-U FOR THE NEUTRON SCATTERING CROSS-SECTION. GAIN TERM FOR SENSITIVITY GAINS DUE TO SCATTERING OUT OF ENERGY GROUP G INTO ALL LOGER NEUTRON
		ENERGY GROUPS, COMPUTED FROM FORWIRD DIFFERENCE FORMULATION.
G-GAIN	•	PARTIAL SENSITIVITY PROFILE PER DELTA-U FOR THE GARMA SCATTERING CROSS-SECTION. GAIN TERM FOR SENSITIVITY GAINS DUE TO SCATTERING OUT OF GAINA ENERGY GROUP G INTO ALL LOWER GAINA ENERGY COMPUTED FROM FORMARD DIFFERENCE FORMALATION.
N-GAIH(SED)	•	RE-OPDERED PARTIAL SENSITIVITY PROFILE PER PELTA-D FOR SCATTERING CROSS-SECTION. COIN TERM FOR SENSITIVITY GAINS DUE TO SCATTERING INTO CROUP & FROM ALL MICHER MEDIKUM EMERGY GROUPS, CORPUTED FROM ADJOINT DIFFERRED FURBLATION: CORRESPONDS TO SINGLE-DIFFERENTIAL SED SENSITIVITY PROFILE, PSED(G-OUT) PER DELU-OUT, INTEGRATED OVER ALL INCIDENT ENERGY GROUPS.
NG-GAIN	•	PARTIAL SENSITIVITY PROFILE PER DELIA-U FOR THE CAMPY PRODUCTION CROSS-SECTION AT MEDITRON ENERGY CROUP G. PURE GAIN TERM FOR SCHOLLTVITY GAINS DUE TO TRANSFER FROM NEUTRON GROUP G INTO ALL GAMPA GROUPS.
SEN	•	HET SENSITIVITY PROFILE PUR DELTA-U FOR THE SCOTTERING CROSS-SECTION (SEN-SASHIGAIN)
SENT	-	NET SENSITIVITY PROFILE PER DELTA-U FOR THE TOTAL CROSS-SECTION (SCHT-TXS/NGAIN)
SEHR	-	SENSITIVITY PROFILE PER DELTA-U FOR THE DETECTOR RESPONSE FUNCTION R(G)
SEHO	•	SENSITIVITY PROFILE PER DELTA-U FOR THE SOURCE DISTRIBUTION FUNCTION Q(G)
,		

TABLE VIIIa: PARTIAL AND NET SENSITIVITY PROFILES FOR THE ONE-DIMENSIONAL ANALYSIS (Part 2)

PARTIAL AND MET SENSITIVITY PROFILES PER DELTA-U, MURYELIZED TO TIPHT - (R,PHI) - 2.1047JE+97
FOR NEUTRON INTERACTION CROSS SECTIONS: (N-M) AND (M-GARMA)

GROUP UPPER-E(EV) 1 1.7002-07 2 1.5007-97 3 1.350E-97 4 1.200E-07 5 1.0007-07 6 7.709E-06 7 6.070E-05 8 3.605E-06 9 2.045E-96 11 1.730E-06 12 1.350E-06 13 8.230E-05 14 5.00E-05 15 3.620E-05 16 1.848E-05 17 6.760E-04	PELTA-U 1.25E-01 1.05E-01 1.05E-01 1.05E-01 2.50E-01 2.50E-01 2.50E-01 2.50E-01 4.96E-01 4.96E-01 1.00S+00 1.00S+00	AXS NU-FISS B. 0. 2.443C+00 B. 1.905E-02 B. 1.995E-02 C1.393E-02 U1.795E-03 C9.625E-04 C5.97E-84 C2.649C-04 D5.99CE-84 B1.534E-03 D1.657E-83 G3.822E-84 B7.099E-04 B.	STERMS TXS 02.1996+01 -1.9526+01 -1.2016+60 -1.7636+69 -2.9926-01 -3.1916-01 -3.4306-01 -3.5726-01 -2.6946-01 -2.7466-01 -2.4456-01 -2.4676-01 -2.6976-01 -3.5126-01 -3.5076-01 -3.5126-01 -3.5076-01 -3.5126-01 -4.6362-01 -4.6446-01 -7.0946-01 -7.196-01 -7.7976-01 -7.7976-01 -1.9976-01 -3.6166-01 -3.0196-01 -3.6266-01 -3.4906-01 -3.5026-01	N-GO1N N-GO N-GO N-GO N-GO N-GO N-GO N-GO N-G	COIN TERMS
10 2.400E+84 19 9.100C-53 20 3.55/0E+03 21 1.2302403 22 4.570G-02 23 1.670C-02 24 6.1405401 25 2.260E+81 26 8.320E+00 27 3.0605400 29 1.130E+08 29 4.142E+01 20 1.520E+81	1.00E+60 1.00E+60 9.90C-01 1.00E+00 1.00E+00 1.00E+00 9.90E-01 1.00E+00 1.00E+00 1.00E+60 1.00E+60 1.00E+60	-5.532E-05 87.329E-05 01.637E-05 02.631E-04 03.807E-05 04.712E-05 05.910E-05 06.016E-05 07.605E-05 05.720E-05 05.720E-05 05.720E-05 0.	-2.002E-02 -2.050E-02 -4.007E-02 -4.0446-02 -2.412E-02 -1.500E-02 -1.500E-02 -1.500E-02 -1.500E-02 -1.500E-02 -1.500E-02 -1.500E-02 -7.000E-03 -4.000E-03 -4.000E-03 -4.000E-03 -1.500E-03 -1.500E-03 -1.500E-03 -1.200E-03	4.000E-02 2.375(E-02 1.500E-02 1.500E-02 1.500E-02 1.500E-03 4.500E-03 2.500E-03 1.51E-03 6.178E-04	2.054E-82 0. 4.04E-92 0. 4.04E-92 0. 1.50E-92 0. 1.50E-92 0. 1.50E-02 0. 1.50E-02 0. 1.50E-02 0. 1.50E-02 0. 2.06E-03 0. 2.16CE-03 0. 1.50E-03 0. 1.50E-03 0. 1.50E-03 0.
INTEGRAL GROUP UPPER-F(EV) 1 1.760E-67 2 1.500E-67 3 1.250C-87 4 1.200E-67 5 1.600E-67 6 6.760E-66 8 3.605E-86 18 2.252E-96 18 2.252E-96 18 2.252E-96 18 2.252E-96 19 2.252E-96 10 1.730E-86 11 1.730E-86 12 1.353E-85 13 8.200E-65 14 5.00E-85 15 3.810E-85 16 1.093E-83 20 4.540E-83 21 1.252E-83 22 4.540E-82 24 6.140E-81 25 2.266E-81 INTEGRAL	DELTA-U 1.25E-01 1.87E-81 1.1CE-01 2.59E-01 2.59E-01 2.59E-01 2.59E-01 2.59E-01 2.59E-01 2.59E-01 4.97E-01 4.97E-01 4.97E-01 4.97E-01 4.96E-00 1.06E-00 1.06E-00 1.06E-00 1.06E-00 1.06E-00 1.06E-00 1.06E-01	2.455E-81		3.34JE+69	3.343E++00 O.

TABLE VIIIb: PARTIAL AND NET SENSITIVITY PROFILES FOR THE TWO-DIMENSIONAL ANALYSIS

PARTIAL AND MET SENSITIVITY PROFILES PER DELTA-U, NORMALIZED TO RR = (R,PHI) = 2.10592E+07
FOR NEUTRON INTERACTION CROSS SECTIONS: (N-H) AND (N-GANTA)

		DE: TO 11	MONOCHOR P U			2 specialistrements		RE GAIN TERMS	
GROOP	UPPER-E(EV) 1.709E:87	DELTA-U 1.25E-01	AXS 0.	11U-F 15S 8.	5XS 0.	TXS 0.	N-CAIN 0.	N-GAIN(SED) B.	NG-GAIN D.
ż	1.50SE+87	1.05E-01	2.4G4E+00	õ.	-2.215E+01	-1.9CCE+01	8.452E+88	4.833E+08	ö.
3	1.350E+87	1.16E-01	1.797E-02	8.	-1.791E+08	-1.773E+60	7.523E-01	1.595E+00	õ.
4	1.2065+07	1.82E-01	-1.977E-02	Β.	-2.955E-01	-3.152E-01	1.365E-01	2.016E-01	0.
5	1.000E+07	2.50E-01	-1.3C0E-02	e.	-3.399E-01	-3.537E-01	1.002E-81	3.1290-01	٥.
6	7.79UE+05	2.4SE-81	-5.657E-03	ø.	-2.662E-01	-2.71CE-01	1.618E-01	2.4705-01	8.
7	6.0700+06	5.005-01	-1.770E-03	Ð.	-2.427E-01	-2.445E-01	1.7198-01	2.3930-01	0.
8	3.609E+06 2.065E+06	2.56E-01 2.5CE-01	-9. 5400-04 - 5.8096-04	0. 8.	-2.864E-01 -3.594E-01	-2.8745-01 -3.686E-01	2.321E-01 3.111E-01	2.055E-01 3.60%E-01	0. 0.
18	2.232E+66	2.500-01	-3.073E-04	õ.	-3.4UIE-01	-3.404E-01	3.1900-01	3.663E-D1	B.
ii	1.73CE+06	2,500-01	-2.624E-04	õ.	-3.711E-01	-3.714E-01	3.511E-81	3.9GCE-01	D.
12	1.353E+05	4.975-01	-5.924E-U4	Đ.	-4.508E-01	-4.59-IE-01	4.301E-01	4.9790-81	Đ.
13	8.23′E+05	4.9RE-01	-1.509E-83	Θ,	-6 .900E-01	-6.995E-01	6.0306-01	7.5630-01	Ð.
14	5.600E+05	5.81E-01	-1.032E-03	0.	-7.60/E-D1	-7.614E-01	7.522E-01	0.049E-01	Θ.
15	3.0356+65	4.97E-81	-3.729E-04	0.	-1.9408-01	-1.952E-01	1.9USE-01	2.019E-01	0.
16 17	1.045E+05 6.760E+04	1.06E+03 1.00E+60	-6.051E-04 -4.200E-04	0. 0.	-2.914E-01 -3.196E-01	-2.926E-01 -3.200E-01	2.037E-01 3.191E-01	3.025E-01 3.217E-01	D.
ié	2.400E+04	1.055+03	-5.399E-65	ð. 0.	-2.603E-02	-2.600E-03	1.9:ISE-62	2.003E-02	0. U.
19	9.1256:03	1.05E+C9	-7.097E-05	õ.	-4.6042-62	-4.691E-02	4.6505-03	4.692E-02	Đ.
20	3.350E+93	9.935-01	-1.022E-05	Ď.	-2.3960-62	-2.092E-02	2.369E-62	2.30 E-02	ē.
21	1.2350:03	1.066+03	-2.503E-04	ម.	-1.4/CE-62	-1.502E-02	1.432E-02	1.403E-02	ō.
22	4.5/0E+02	1.866+83	-3.72GE-US	0.	-1.6455-02	-1.G4DE-02	1.GG/E-02	1.64SE-02	Θ.
23	1.6700+32	1.005+03	-4.G20E-05	0.	-1.350E-02	-1.3G2E-02	1.3516-02	1.3G1E-02	0.
24	6.14GE+01	9.996-01	-5.6102-65	ម.	-1.0120-02	-1.01CE-U2	1.007E-02	1.01CE-02	0.
25	2.2CGE+01	9.995-01	-6.727E-05	8.	-6.927F-63	-6.904E-03 -4.416E-03	6.8952-63	6.907E-83	0.
26 27	8.3205403 3.86J5+63	1.00E+00 9.06E-01	-7.023E-05 -6.646E-05	0. 8.	-4.340E-03	-2.5G2E-03	4.341E-63 2.509E-03	4.412E-03 2.55CE-03	0. C.
28	1.130E+08	1.05E400	-5.720E-05	ő.	-1.30-15-03	-1.351E-03	1.320E-63	1.359E-03	8.
29	4.140E-01	1.CCE+33	-4.43-IE-05	ē.	-6.11CE-04	-6.5C1E-04	6.363E-04	6.5GUE-04	õ.
30	1.520E-01	1.11E+08	-2.022E-04	8.	-9.99UE-04	-1.20ZE-03	1.169E-03	1.181E-03	Ü.
	BA:					4 2075 .00			
INTEG	KAL		2.479E-01	0.	-5.841E H08	-4.793E+00	3.275E+60	3.275E+00	0.
			MOIOR HET PR	OFILES ****					
	UPPER-E(EV)	DELTA-U	SEN	SENT					
GROUP I	UPPER-E(EV) 1.708E+07	DELTA-U 1.25E-81							
1	1.708E+07	1.25E-81	SEH D.	SENT 8.					
		1.25E-81 1.85E-81	SEN B. -1.3G9C+01	SENT 8. -1.123E+01					
1 2 3 4	1.700E+07	1.25E-81	SEH D.	SENT 8.					
1 2 3 4 5	1.708E+67 1.500E+07 1.335E+07 1.20:6:407 1.003E+07	1.25E-81 1.85E-81 1.10E-91 1.62E-81 2.56E-91	SEN B. -1.369C+01 -1.809E+00	SENT 8. -1.123E+01 -1.021E+00					
1 2 3 4 5 6	1.708E+67 1.500E+07 1.335E+87 1.20:6.407 1.609E+07 7.706E+06	1.25E-81 1.65E-81 1.165E-91 1.62E-91 2.56E-91 2.49E-91	SEN -1.369C+01 -1.050E+01 -1.509E-01 -1.596E-01 -1.044E-01	SENT 6. -1.123E+01 -1.021E+00 -1.707E-01 -1.734E-01 -1.101E-01					
1 2 3 4 5 6 7	1.708E+07 1.500E+07 1.330E+07 1.20:6:407 1.603E+07 7.706E+06 6.070E+06	1.25E-81 1.85E-81 1.18E-81 1.62E-81 2.56E-81 2.49E-81 5.86E-81	SEN 61.369C+01 -1.950E+00 -1.509E-01 -1.596E-01 -1.644E-01 -7.604E-02	SENT 6. -1.123E+01 -1.021E+00 -1.707E-01 -1.734E-01 -1.101E-01 -7.259E-02					
2 3 4 5 6 7 8	1.708E+07 1.500E+07 1.330E+07 1.20:6:407 1.009E+07 7.700E+06 6.07(E+06 3.600E+06	1.25E-81 1.85E-81 1.105-61 1.62E-81 2.56E-81 2.45E-81 5.60E-81	-1.369C+01 -1.000E+00 -1.500E+01 -1.500E+01 -1.96E+01 -7.001E+02 -5.430E-02	5ENT 6. -1.123E+01 -1.021E+00 -1.707C-01 -1.734E-01 -1.101E-01 -7.259E-02 -5.531E-02					
1 2 3 4 5 6 7 8 9	1.788E+87 1.500E+07 1.350E+97 1.20:f::407 1.600E+06 6.07:0E+06 3.600E+06 2.055E+06	1.25E-81 1.85E-81 1.10E-81 1.82E-81 2.56E-81 2.45E-81 5.86E-81 2.56E-81 2.56E-81	SEN -1.369C+01 -1.000E400 -1.500E-01 -1.506E-01 -1.044E-01 -7.601E-02 -5.400E-02 -4.032E-02	5ENT 6. -1.123E+01 -1.021E+00 -1.707E-01 -1.707E-01 -1.101E-01 -7.259E-02 -4.091E-02					
2 3 4 5 6 7 8	1.708E+07 1.500E+07 1.330E+07 1.20:6:407 1.009E+07 7.700E+06 6.07(E+06 3.600E+06	1.25E-81 1.65E-81 1.62E-81 1.62E-81 2.57E-01 2.5FE-01 2.5EE-01 2.5EE-01 2.5EE-01	SEH -1.369C+01 -1.050E+00 -1.509E-01 -1.596E-01 -1.64E-01 -7.001E-02 -5.450E-02 -4.032E-02 -3.226E-02	5ENT 6. -1.123E+81 -1.021E+00 -1.707C-01 -1.734E-01 -1.101E-01 -7.259E-02 -5.531E-02 -4.091E-02 -3.257E-02					
1 2 3 4 5 6 7 8 9 10 11 12	1.708E+67 1.500E+07 1.30E+87 1.20:6:407 1.000E+06 6.07:0E+06 3.000E+06 2.055E+06 2.232E+03 1.730E+86 1.353E+06	1.25E-81 1.85E-81 1.10E-81 1.82E-81 2.56E-81 2.45E-81 5.86E-81 2.56E-81 2.56E-81	SEN -1.369C+01 -1.050E400 -1.509E-01 -1.509E-01 -1.041E-01 -7.001E-02 -5.435E-02 -4.032E-02 -2.007E-02	5ENT 6. -1.123E+81 -1.021E+00 -1.707C-01 -1.734E-01 -1.101E-01 -7.259E-82 -5.551E-82 -4.091E-92 -2.237E-92 -2.234E-82					
1 2 3 4 5 6 7 8 9 10 11 11 12 13	1.788E+87 1.500E+07 1.335E+87 1.2046+87 1.2046+87 7.706E+86 6.874E+66 3.005E+06 2.055E+06 1.733E+86 1.733E+86 8.236E+05	1.25E-81 1.85E-81 1.100-81 1.82E-81 1.82E-81 2.56E-81 2.56E-81 2.58E-81 2.59E-81 2.59E-81 4.97E-81	SEH -1.369C+01 -1.050E+00 -1.509E-01 -1.596E-01 -1.64E-01 -7.001E-02 -5.450E-02 -4.032E-02 -3.226E-02	5ENT 6. -1.123E+81 -1.021E+00 -1.707C-01 -1.734E-01 -1.101E-01 -7.259E-02 -5.531E-02 -4.091E-02 -3.257E-02					
2 3 4 5 6 7 8 9 10 11 12 13	1.708E+87 1.500E+07 1.335E+87 1.2046+87 1.2046+87 7.706E+06 6.071E+06 2.055E+06 2.055E+06 1.737E+86 1.353E+06 8.225E+05	1.25E-81 1.85E-81 1.10E-91 1.82E-91 1.82E-91 2.56E-91 2.56E-91 2.59E-91 2.50E-91 4.97E-91 4.97E-91 4.90E-91	SEN -1.369C+01 -1.000E+00 -1.500E-01 -1.500E-01 -1.040E-01 -7.001E-02 -5.435E-02 -4.032E-02 -2.007E-02 -2.007E-02 -1.417E-02 -8.193E-03	5ENT 6. -1.123E+81 -1.021E+00 -1.707C-01 -1.734E-01 -1.101E-01 -7.259E-82 -4.091E-92 -4.091E-92 -2.034E-92 -2.234E-92 -2.927E-02 -1.560E-02 -9.224E-03					
2 3 4 5 6 7 8 9 10 11 12 13 14 15	1.708E+67 1.500E+07 1.30E+87 1.20:6:407 1.000E+06 6.07:0E+06 3.000E+06 2.055E+06 2.232E+06 1.730E+86 1.353E+06 8.236E+05 5.000E+05	1.25E-81 1.85E-81 1.10E-91 1.62E-91 1.62E-91 2.50E-91 2.50E-91 2.50E-91 4.97E-91 4.97E-91 4.97E-91 4.99E-91	SEH -1.3G9C+01 -1.020E400 -1.509E-01 -1.596E-01 -1.044E-01 -7.001E-02 -5.420E-02 -4.032E-02 -2.007E-02 -2.1417E-02 -8.192E-03 -4.572E-03	-1.123E+01 -1.021E+01 -1.707C-01 -1.707C-01 -1.703E-01 -1.734E-01 -7.259E-02 -4.091E-02 -4.091E-02 -2.034E-02 -2.927E-02 -1.566E-02 -9.224E-03 -4.944E-03					
23 44 55 67 89 10 11 12 13 14 15 16	1.708E+87 1.500E+07 1.335E+87 1.209A+07 1.0092+07 7.706E+06 6.070E+06 2.055E+06 2.055E+06 1.739E+86 1.739E+86 1.355E+06 8.236E+05 5.009E+05 3.000E+05	1.25E-81 1.85E-81 1.10C-01 1.82E-01 2.56E-01 2.56E-01 2.56E-01 2.56E-01 2.59E-01 2.59E-01 4.97E-01 4.97E-01 4.98E-01 5.61E-01	SEN 61.369C+01 -1.059C+00 -1.590E-01 -1.590E-01 -1.590E-01 -7.001E-02 -5.435E-02 -4.032E-02 -2.00CE-02 -2.00CE-02 -1.417E-02 -8.193E-03 -2.629C-03 -2.629C-03	5ENT 61.123E+81 -1.123E+80 -1.707C-81 -1.707C-81 -1.703E-81 -1.101E-81 -7.259E-82 -4.091E-82 -4.091E-82 -2.927E-82 -2.927E-82 -2.927E-82 -2.927E-83 -4.94-86-83 -3.314E-83					
2 3 4 5 6 7 8 9 18 11 12 13 14 15 16 17	1.708E+87 1.500E+07 1.335E+87 1.2016:487 1.2016:487 1.2016:486 6.071E+06 2.025E+06 2.025E+06 2.025E+06 1.339E+86 1.339E+86 1.353E+86 3.030E+85 3.030E+85 3.030E+85	1.25E-81 1.85E-81 1.10E-91 1.82E-91 1.82E-91 2.56E-91 2.45E-91 2.56E-91 2.59E-91 4.97E-91 4.97E-91 4.97E-91 4.97E-91 4.97E-91 4.96E-91 4.96E-91 4.96E-91	SEH -1.3G9C+01 -1.020E+06 -1.509E+01 -1.59GE+01 -1.94E-01 -7.001E-02 -5.433E-02 -4.332E-02 -2.007E-02 -2.007E-02 -1.417E-02 -8.192E-03 -4.572E-03 -2.629C-03	-1.123E+81 -1.021E+81 -1.707C-01 -1.707C-01 -1.704E-01 -1.101E-81 -7.209E-82 -5.531E-82 -4.091E-82 -3.257E-02 -2.034E-82 -2.927E-02 -1.560E-02 -1.560E-02 -9.262E-03 -4.944E-03 -3.314E-03 -9.719E-04					
23 44 55 67 89 10 11 12 13 14 15 16	1.708E+87 1.500E+07 1.335E+87 1.209A+07 1.0092+07 7.706E+06 6.070E+06 2.055E+06 2.055E+06 1.739E+86 1.739E+86 1.355E+06 8.236E+05 5.009E+05 3.000E+05	1.25E-81 1.85E-81 1.10C-01 1.82E-01 2.56E-01 2.56E-01 2.56E-01 2.56E-01 2.59E-01 2.59E-01 4.97E-01 4.97E-01 4.98E-01 5.61E-01	SEH -1.369C+01 -1.0506400 -1.509E-01 -1.596E-01 -1.644E-01 -7.001E-02 -4.0326-02 -4.0326-02 -2.006E-02 -2.006E-02 -2.006E-03 -2.669C-03 -4.972E-03 -4.972E-03 -4.972E-03	-1.123E+01 -1.021E+00 -1.7021E+00 -1.7021E+00 -1.702E-01 -1.734E-01 -7.259E-02 -5.531E-02 -4.091E-02 -2.034E-02 -2.034E-02 -2.927E-02 -2.927E-02 -1.560E-02 -9.224E-03 -3.314E-03 -9.7192-04					
234556789910111123141561718928	1.788E+87 1.500E+07 1.335E+87 1.2046+87 1.2046+87 7.706E+06 3.605E+06 2.655E+06 2.55E+06 1.335E+86 1.355E+86 1.355E+86 1.355E+86 1.355E+86 1.355E+86 1.355E+86 1.355E+86 2.45E+86	1.25E-81 1.85E-81 1.10E-91 1.62E-91 2.56E-91 2.56E-91 2.56E-91 2.56E-91 2.50E-91 4.97E-91 4.97E-91 4.97E-91 1.00E+08 1.80E+68	SEH -1.3G9C+01 -1.020E+06 -1.509E+01 -1.59GE+01 -1.94E-01 -7.001E-02 -5.433E-02 -4.332E-02 -2.007E-02 -2.007E-02 -1.417E-02 -8.192E-03 -4.572E-03 -2.629C-03	-1.123E+81 -1.021E+81 -1.707C-01 -1.707C-01 -1.704E-01 -1.101E-81 -7.209E-82 -5.531E-82 -4.091E-82 -3.257E-02 -2.034E-82 -2.927E-02 -1.560E-02 -1.560E-02 -9.262E-03 -4.944E-03 -3.314E-03 -9.719E-04					
234567891811213145167189281	1.788E+87 1.500E+07 1.335E+87 1.204A+07 1.335E+87 1.204A+07 1.309E+87 7.706E+86 3.009E+66 2.032E+06 1.739E+86 1.353E+86 3.030E+83 1.20E+83 1.305E+83	1.25E-81 1.85E-81 1.10C-91 1.82E-91 2.56C-91 2.56C-91 2.56C-91 2.56C-91 2.59C-91 2.59C-91 4.97E-91	-1.369C+01 -1.309C+01 -1.000E+00 -1.500E-01 -1.04E-01 -1.04E-01 -7.001E-02 -4.032E-02 -4.032E-02 -2.00CE-02 -2.00CE-02 -1.417E-02 -8.193E-03 -4.5972E-03 -5.4456-04 -5.673E-04 -5.673E-04	-1.123E+81 -1.123E+81 -1.021E+800 -1.707E-01 -1.707E-01 -1.734E-81 -1.101E-82 -5.531E-82 -4.091E-92 -3.257E-92 -2.927E-02 -2.927E-02 -2.927E-02 -2.927E-03 -4.944E-93 -9.7192-94 -3.325E-94 -3.325E-94 -2.025E-94					
23345 6789 101123 114156 17819 28122	1.708E+87 1.500E+07 1.335E+87 1.2096.487 1.2096.487 7.706E+06 6.071E+06 2.055E+06 2.232E+03 1.739E+86 1.739E+86 8.226E+05 5.000E+03 3.000C+03 3.000C+03 3.000C+03 3.000C+03 4.206E+04	1.25E-81 1.85E-81 1.10E-01 1.82E-01 2.56E-01 2.45E-01 2.56E-01 2.56E-01 4.97E-01 4.97E-01 4.97E-01 4.97E-01 4.96E-01 1.06E+00 1.06E+00 1.06E+00 1.06E+00 1.06E+00 1.06E+00 1.06E+00 1.06E+00 1.06E+00	5EH -1.3G9C+01 -1.020E+01 -1.509E+01 -1.509E+01 -1.509E+01 -1.041E-01 -7.001E-02 -5.435E-02 -4.325E-02 -2.007E-02 -2.007E-02 -1.417E-02 -2.000E-03 -4.572C-03 -2.625C-03 -2.625C-03 -2.625C-03 -2.625C-04 -3.0.00E-04 -5.509C-04 -7.725E-05	5ENT 81.123E+81 -1.021E+00 -1.707C-01 -1.734E-01 -1.101E-91 -1.101E-91 -7.259E-02 -3.257E-02 -3.257E-02 -3.257E-02 -2.927E-02 -2.927E-03 -4.944E-03 -9.7196-04 -5.227E-04 -5.227E-04 -1.150E-04					
234567899111231451671898223	1.788E+87 1.500E+07 1.335E+87 1.2046+87 1.2046+87 7.706E+06 3.605E+06 2.655E+06 1.733E+86 1.353E+86 1.353E+86 1.353E+86 1.353E+86 1.353E+86 1.353E+86 1.353E+86 3.030E+85 1.049E+83 1.20E+83 1.20E+83 1.20E+83 1.20E+83	1.25E-81 1.85E-81 1.10E-91 1.82E-81 1.82E-81 2.56E-91 2.56E-91 2.56E-91 2.56E-91 2.56E-91 2.50E-91 1.96E-91 1.06E+08	SEH -1.369C+01 -1.050E001 -1.505E-01 -1.596E-01 -1.596E-01 -1.044E-01 -7.001E-02 -4.032E-02 -4.032E-02 -2.007E-02 -2.006E-02 -1.417E-02 -8.190E-03 -4.572E-03 -2.625C-03 -5.435E-04 -2.615C-04 -3.0.10E-04 -5.505E-05 -7.725C-05	-1.123E+01 -1.021E+01 -1.021E+01 -1.707C-01 -1.707C-01 -1.734E-01 -1.101E-01 -2.59E-02 -4.091E-02 -2.034E-02 -2.034E-02 -2.927E-02 -1.560E-02 -9.224E-03 -3.314E-03 -3.314E-03 -3.314E-04 -6.21:E-04 -3.325C-04 -2.925E-04 -1.165E-04					
2 3 4 5 6 7 8 9 18 11 12 13 14 15 6 17 8 19 28 12 22 3 4	1.708E+87 1.500E+07 1.335E+87 1.209.4407 1.309E+86 6.970E+06 3.009E+06 2.025E+06 1.739E+86 1.749E+86 1.74	1.25E-81 1.85E-81 1.10E-01 1.82E-01 2.56E-01 2.45E-01 2.56E-01 2.56E-01 2.56E-01 2.56E-01 4.97E-01	SEN 6	5.501 81.123E+81 -1.123E+81 -1.123E+81 -1.123E+81 -1.723E+81 -1.734E-81 -1.734E-81 -7.259E-82 -4.091E-92 -2.927E-92 -2.927E-92 -2.927E-92 -2.927E-92 -2.927E-92 -1.560E-92 -9.224E-93 -3.314E-93 -3.314E-93 -3.314E-93 -1.125E-94 -1.125E-94 -1.125E-94 -1.125E-94 -1.125E-94 -1.125E-94 -1.125E-94					
23345 67899 101123 11415 11718 11912 11912 11922	1.708E+87 1.500E+07 1.335E+87 1.2046+87 1.2046+87 1.2046+87 7.708E+86 6.0718E+86 2.025E+06 2.025E+06 1.737E+86 1.353E+86 1.353E+86 1.353E+86 1.353E+85 3.030C+95 3.030C+95 3.030C+95 3.030C+95 3.030C+95 1.040E+83 4.2496E+83 4.2496E+83 4.2496E+83 1.276E+83	1.25E-81 1.85E-81 1.10E-91 1.82E-91 2.56E-91 2.45E-91 2.56E-91 2.55E-91 4.97E-91 4.97E-91 4.97E-91 1.00E+09	5EH -1.3G9C+01 -1.050E+01 -1.509E+01 -1.509E+01 -1.504E+01 -7.001E+02 -5.435E+02 -4.325E+02 -2.007E+02 -2.006E+02 -1.417E+02 -8.190E+03 -4.572E+03 -2.629C+03 -2.629C+03 -2.629C+03 -7.725E+05 -7.725E+05 -7.606E+05 -5.4453E+04	-1.123E+81 -1.123E+81 -1.021E+80 -1.707T-01 -1.707T-01 -1.734E-01 -1.101E-81 -7.259E-82 -5.531E-82 -4.091E-82 -2.034E-82 -2.034E-82 -2.927E-02 -1.560E-02 -9.224E-03 -3.314E-03 -3.314E-03 -3.314E-03 -3.314E-04 -6.214E-84 -6.214E-84 -1.165E-84 -1.165E-84 -1.176E-84 -1.176E-84 -1.176E-84					
2 3 4 5 6 7 8 9 18 11 12 13 14 15 6 17 8 19 28 12 22 3 4	1.708E+87 1.500E+07 1.335E+87 1.209.4407 1.309E+86 6.970E+06 3.009E+06 2.025E+06 1.739E+86 1.749E+86 1.74	1.25E-81 1.85E-81 1.10C-91 1.82E-91 2.56C-91 2.66C-93 2.66C-93	5EH -1.369C+01 -1.050E+00 -1.509E-01 -1.044E-01 -1.044E-01 -7.001E-02 -5.455E-02 -4.0326E-02 -2.006E-02 -1.417E-02 -8.195E-03 -4.592E-03 -2.659E-03 -5.455E-04 -3.070E-05 -7.725E-05 -7.725E-05 -7.105E-05 -7.105E-05 -7.115E-05	-1.123E+01 -1.021E+00 -1.702TE+00 -1.702TE+00 -1.702TE+00 -1.734E-01 -1.101E-01 -7.259E-02 -5.531E-02 -3.257E-02 -2.034E-02 -2.927E-02 -2.927E-02 -1.560E-02 -9.224E-03 -3.314E-03 -9.710E-04 -6.21-E-04 -3.325E-04 -1.165E-04 -1.165E-04 -1.165E-04 -1.176E-04 -1.176E-04 -1.176E-04 -1.176E-04 -7.679E-65					
1 2345678991112345678891223456789	1.788E+87 1.500E+07 1.335E+87 1.2046+87 1.2046+87 7.796E+06 6.874E+66 2.855E+06 2.855E+06 1.353E+86	1.25E-81 1.85E-81 1.10E-91 1.82E-91 2.56E-91 2.45E-91 2.56E-91 2.55E-91 4.97E-91 4.97E-91 4.97E-91 1.00E+09	5EH -1.3G9C+01 -1.050E+01 -1.509E+01 -1.509E+01 -1.504E+01 -7.001E+02 -5.435E+02 -4.325E+02 -2.007E+02 -2.006E+02 -1.417E+02 -8.190E+03 -4.572E+03 -2.629C+03 -2.629C+03 -2.629C+03 -7.725E+05 -7.725E+05 -7.606E+05 -5.4453E+04	-1.123E+81 -1.123E+81 -1.021E+80 -1.707T-01 -1.707T-01 -1.734E-01 -1.101E-81 -7.259E-82 -5.531E-82 -4.091E-82 -2.034E-82 -2.034E-82 -2.927E-02 -1.560E-02 -9.224E-03 -3.314E-03 -3.314E-03 -3.314E-03 -3.314E-04 -6.214E-84 -6.214E-84 -1.165E-84 -1.165E-84 -1.176E-84 -1.176E-84 -1.176E-84					
2345678910 111231456789 10112314561781981223456789	1.788E+87 1.500E+07 1.335E+87 1.2096+87 1.2096+87 7.796E+86 6.870E+66 2.835E+06 2.835E+06 1.739E+86 1.353E+86 1.353E+86 3.309E+83 1.209E+83 4.515E+83	1.25E-81 1.85E-81 1.10C-91 1.82E-91 2.56C-91 2.56C-91 2.56C-91 2.55C-91 2.55C-91 2.55C-91 2.55C-91 4.97E-91	5EH -1.369C+01 -1.050E+00 -1.509E-01 -1.04E-01 -1.04E-01 -7.001E-02 -5.435E-02 -4.032E-02 -2.007E-02 -2.006E-02 -1.417E-02 -8.193E-03 -4.572E-03 -5.455E-04 -2.615E-04 -3.0.00E-05 -7.725E-05 -7.725E-05 -7.36E-05 -7.456E-05 -7.456E-05 -7.456E-05 -7.456E-05 -7.456E-05 -7.456E-05 -7.456E-05 -7.456E-05	5. SENT 61.123E+01 -1.021E+00 -1.7021E+00 -1.7021E+00 -1.703E-01 -1.101E-01 -7.259E-02 -2.034E-02 -2.034E-02 -2.034E-03 -3.314E-03 -9.7102-04 -2.025E-04 -1.160E-04 -1.160E-0					
1 2345678991112345678891223456789	1.788E+87 1.500E+07 1.335E+87 1.2046+87 1.2046+87 7.796E+06 6.874E+66 2.855E+06 2.855E+06 1.353E+86	1.25E-81 1.85E-81 1.10E-91 1.82E-81 1.82E-81 2.56E-91 2.56E-91 2.56E-91 2.56E-91 2.56E-91 2.56E-91 1.56E-91 1.56E-91 1.96E-91 1.06E-99 1.96E-91 1.06E-99 9.96E-91 1.06E-99 9.96E-91	5EH -1.3G9C+01 -1.050E+01 -1.509E+01 -1.509E+01 -1.509E+01 -1.504E+01 -7.0G1E+02 -5.435E+02 -3.22GE+02 -2.0GE+02 -2.0GE+02 -2.0GE+02 -3.22GE+02 -3.32GE+03 -3.5445G+04 -5.673E+04 -2.619E+04 -3.010G+04 -5.509G+05 -7.725G+05 -7.725G+05 -7.725G+05 -7.40G-05 -3.412G+05	-1.123E+01 -1.021E+01 -1.021E+01 -1.707T-01 -1.734E-01 -1.734E-01 -1.101E-02 -5.531E-02 -4.091E-02 -3.257E-02 -4.091E-02 -3.257E-02 -1.560E-02 -9.224E-03 -3.314E-03 -3.314E-03 -3.314E-03 -3.314E-03 -3.314E-03 -1.196E-04 -1.145E-04 -1.165E-04 -1.165E-04 -1.165E-04 -1.165E-04 -1.165E-04 -1.165E-04 -1.165E-04 -1.165E-04 -1.165E-04 -1.175C-04 -1.327E-05 -7.679E-05 -7.679E-05					
2345678910 111231456789 10112314561781981223456789	1.788E+87 1.500E+07 1.335E+87 1.204A+07 1.305E+87 7.70E+86 6.87(E+66 3.605E+06 2.65E+06 1.739E+86	1.25E-81 1.85E-81 1.10C-91 1.82E-91 2.56C-91 2.56C-91 2.56C-91 2.55C-91 2.55C-91 2.55C-91 2.55C-91 4.97E-91	5EH -1.369C+01 -1.050E+00 -1.509E-01 -1.04E-01 -1.04E-01 -7.001E-02 -5.435E-02 -4.032E-02 -2.007E-02 -2.006E-02 -1.417E-02 -8.193E-03 -4.572E-03 -5.455E-04 -2.615E-04 -3.0.00E-05 -7.725E-05 -7.725E-05 -7.36E-05 -7.456E-05 -7.456E-05 -7.456E-05 -7.456E-05 -7.456E-05 -7.456E-05 -7.456E-05 -7.456E-05	5. SENT 61.123E+01 -1.021E+00 -1.7021E+00 -1.7021E+00 -1.703E-01 -1.101E-01 -7.259E-02 -2.034E-02 -2.034E-02 -2.034E-03 -3.314E-03 -9.7102-04 -2.025E-04 -1.160E-04 -1.160E-0					

$$\chi^{g} = \begin{array}{ccc} \underset{\ell=0}{\text{LMAX}} & \underset{k=0}{\ell} & \psi^{k}_{gg} & = \begin{array}{c} \underset{\ell=0}{\text{LMAX}} & \psi^{gg} \\ & & \\ \end{array}.$$

Table IX provides a comparison between the χ 's calculated from angular fluxes and flux moments. There is a very good agreement. It was found that this relationship is also true in the one-dimensional analysis. For $\ell=0$ and $\ell=1$, the $\Psi_\ell^{k'}$ s calculated in SENSIT and SENSIT-2D are different. However, the Ψ_ℓ 's defined by

$$\Psi_{\ell}^{gg} = \sum_{k=0}^{\ell} \Psi_{\ell}^{kgg} \tag{123}$$

are in agreement.

5.1.3 Comparison between a two-dimensional and a one-dimensional crosssection sensitivity and uncertainty analysis

A cross-section sensitivity and uncertainty analysis was done for the heating in the copper region, using SENSIT and SENSIT-2D. In this analysis the effects of the uncertainties in the secondary energy distribution were included. Six separate SENSIT (or SENSIT-2D) runs were required:

TABLE IX: COMPARISON BETWEEN THE CHI'S CALCULATED FROM ANGULAR FLUXES AND FROM FLUX MOMENTS

	SENSIT-	PD	SENSIT	
Group	chi (ang. fluxes)	chi (flux moments)	chi (ang. fluxes)	chi (flux moments)
1	0.0	0.0	0.0	
2	2.5058+8	2,5053+8	2.4933+8	2.5003+8
3	2.4380+7	2.4362+7	2。4493+7	
Į,	6,1304+6	6,1264+6	6,1829+6	
5	8 . 3365+6	8,3329+6	8-1135+6	
6	5.6869+6	5.6854+6	5.7և2և+6	
7	9.3953+6	9. 39ևև+6	9•4775+6	
8	5.6883+6	5.6881+6	5.7312+6	
9	7.1543+6	7.1543+6	7.2079+6	
10	7.3349+6	7.3349^6	7.3894+6	
n	7,5619+6	7.9619+6	7.9321+6	
12	2.1571+7	2.1571+7	2 . 1793+6	•
13	2.8571+7	2.9571+7	2.9072+6	•
14	2.5429+7	2.5429+7	2,6026+6	
15	6.3491+6	6.3h91+6	6,5028+6	
16	1,5783+7	1.5783+7	1.6345+7	
17	6,5269+6	6.5269+6	7•135և+6	
18	1.7636+6	1.7636+6	1.8060+6	
19	1.2463+6	1.2463+6	1.2862+6	
20	7.6860+5	7.6860+5	7.7452+5	
21	3.7764+5	3.7764+5	3.Ցևկ0+5	
22	3.7415+5	3.7415+5	3.9205+5	
23	2.9673+5	2.9673+5	3.0%45+5	
5ր	2.2041+5	2.?041+5	2 . ?h06+5	
25	1,5067+5	1.5067+5	1.5257+5	
26	9.463և+և	ծ• րę3ր+ր	9 . 5405+h	
27	2°11040+11	5•1091+h	5.4300+h	
28	2,8կ76+և	2.8կ76+և	5 - 8H 6 6 + H	
29	1.332և+և	1.3325+4	1.3318+4	
30	2.3951+4	5•38f8+ft	2.կ510+կ	

- three runs for the vector cross-section sensitivity and uncertainty analysis (one for the cross sections of zone II, one for the cross sections of zone III, and one for the cross sections of zone IV),
- three runs for the SED sensitivity and uncertainty analysis.

Oxygen was not included in the vector cross-section sensitivity and uncertainty analysis, and hydrogen was ignored in the SED sensitivity and uncertainty analysis.

The procedure for an uncertainty analysis has been discussed by Gerstl. 45 The results from the one-dimensional analysis are reproduced in Table Xa, while those from the two-dimensional study are given in Table Xb. The studies are in good agreement. Sensit required a total of 89 seconds of computing time, while SENSIT-2D required 90 seconds on a CDC-7600 machine. The uncertainty of the heating rate due to all cross-section uncertainties is 30%. The iron in zone II is the largest contributor to that uncertainty. The contribution of the SED uncertainty is smaller than that from the vector cross sections. Gerstl points out that the results obtained from the SED analysis might have been underestimated due to the simplicity of the "hot-cold" concept and due to the fact that the partial cross sections which contribute to the secondary energy distribution were not separated into individual partial cross sections. 45

TABLE Xa. PREDICTED RESPONSE UNCERTAINTIES DUE TO ESTIMATED CROSS SECTION AND SED UNCERTAINTIES IN A ONE-DIMENSIONAL ANALYSIS

CROSS SECTION	ZONE	I .	ERTAINTIES DUE FAINTIES, IN %	RESPONSE UNCERTAINTIES DUE TO CROSS-SECTION UNCERTAINTIES, IN %		
		$\begin{bmatrix} \frac{\Delta R}{R} \\ \\ zone \end{bmatrix}$	$\begin{bmatrix} \underline{\Delta R} \\ \overline{R} \end{bmatrix} $ zone	$\begin{bmatrix} \frac{\Delta R}{R} \\ \\ \\ \\ zone \end{bmatrix}$ x-sect	$\begin{bmatrix} \underline{\Delta R} \\ \overline{R} \end{bmatrix}^*$ zone	
Fe	II	8.18	8.18	23.80	23.80	
Fe	III	2.50		10.33		
0	III	0.78	2.61	_	10.52	
H	III	-		1.96		
Cu	IV	4.02	4.02	11.72	11.72	
All*			9.48		28.54	

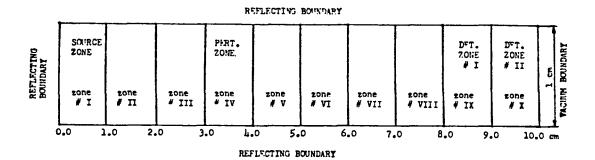
Overall uncertainty = $(9.48^2 + 28.54^2)^{\frac{1}{2}} = 30.0\%$

^{*} quadratic sums

TABLE Xb. PREDICTED RESPONSE UNCERTAINTIES DUE TO ESTIMATED CROSS SECTION AND SED UNCERTAINTIES IN A TWO-DIMENSIONAL ANALYSIS

CROSS SECTION	ZONE	RESPONSE UNCER TO SED UNCERTA		RESPONSE UNCERTAINTIES DUE TO CROSS-SECTION UNCERTAIN- TIES, IN %		
		$\begin{bmatrix} \frac{\Delta R}{R} \\ \end{bmatrix}_{\substack{\text{element} \\ \text{zone}}}$	$\left[\frac{\Delta R}{R}\right]_{zone}^{*}$	$\begin{bmatrix} \Delta R \\ \overline{R} \end{bmatrix}$ element zone	$\begin{bmatrix} \underline{\Delta R} \\ \overline{R} \end{bmatrix}^{*}_{zone}$	
Fe	11	8.17	8.17	23.88	23.88	
Fe	III	2.50		10.27		
0		0.79	2.62	-	10.46	
Н	III	-		1.96		
Cu	IV	4.02	4.02	11.68	11.68	
All*			9.47		28.57	

Overall uncertainty = $(9.47^2 + 28.57^2)^{\frac{1}{2}} = 30.1\%$


^{*} quadratic sums

5.2 Sample Problem #2

A simple one-band problem will be analyzed to study the influence of the mesh spacing, quadrature order, convergence precision, and the c-factor (mean number of secondaries per collision) on the sensitivity profile. The band is 1-cm high and 20-cm wide. There are ten distinct zones, each 1-cm wide (Fig. 11), and all zones are made of the same material. A three-group artificial cross-section set with a third-order anisotropic scattering is used (Table XI). The P_1 , P_2 , and P_3 components of the scattering cross-section tables were chosen to be identical with the P_0 component. A volumetric source with a source density of 1 neutron/cm³ in group 1 is present in the first zone. A standard cross-section sensitivity analysis will be performed, in which the cross sections in zone IV are perturbed, and the detector response is calculated in zones IX and X for a response function of 100 cm $^{-1}$ in each group.

5.2.1 Influence of the quadrature order on the sensitivity profile

The detector response calculated by TRIDENT-CTR using EQ $_6$, EQ $_{12}$, and EQ $_{16}$ quadrature sets are compared in Table XII. For the first three cases, the pointwise convergence precision was set to 10^{-3} and each zone contained four triangles (using automatic meshes). Five additional cases are included in Table XII:

r-z geometry

All zones contain identical materials

3 neutron groups

Neutron source: 1 neutron / cm^3 in zone I and group 1

Response function: 100 cm⁻¹ (all groups)

Figure 11. Two-dimensional model for sample problem #2

TABLE XI: CROSS SECTION TABLE USED IN SAMPLE PROBLEM #2 (THE P_0 , P_1 , P_2 , AND P_3 TABLES ARE IDENTICAL)

Cross Section	Group	g = 1	g = 2	g = 3
Σ ^g edit		-	-	_
$\Sigma_{\mathbf{a}}^{\mathbf{g}}$		0.02	0.05	0.1
$\Sigma_{\mathbf{f}}^{\mathbf{g}}$		0.0	0.0	0.0
$\Sigma_{\mathrm{T}}^{\mathbf{g}}$		0.1	0.2	0.3
∑g→g		0.05	0.1	0.2
∑ _S g-1→g		0.0	0.02	0.05
Σg-2→g		0.0	0.0	0.01

TABLE XII: INTEGRAL RESPONSE FOR SAMPLE PROBLEM #2

Transport Code	Quadrature Set	Convergence Precision	# Triangles ¹	Forward Response	Adjoint Response
TRIDENT-CTR	EQ-6 ²	10 ⁻³	40	593.968	592.256
TRIDENT-CTR	EQ-12	10 ⁻³	40	592.826	591.659
TRIDENT-CTR	EQ-16	10-3	40	593.659	592.476
TRIDENT-CTR	EQ-12	10-4	40	593.659	593.148
TRIDENT-CTR	Eq-12	10 ⁻⁴	80	593.688	593.208
ONEDANT	S-12 ³	10 ⁻⁴	40	593.855	590.370
ONEDANT	S-32	10-4	40	591.814	590.883
ONEDANT	S-32	10 ⁻⁴	80	592.055	590.900

 $^{^{1}}$ # spatial intervals for ONEDANT.

² equal-weight quadrature sets.

³ Gaussian quadrature sets.

- 1. integral response using an EQ $_{12}$ quadrature set with convergence precision 10^{-4} ;
- 2. integral response using an EQ $_{12}$ quadrature set with convergence precision 10^{-4} and eight triangles per zone;
- 3. integral response calculated by ONEDANT using an S_{12} quadrature set, four intervals per zone and a 10^{-4} convergence precision;
- 4. integral response calculated by ONEDANT, using an S_{32} quadrature set, four intervals per zone and a 10^{-4} convergence precision;
- 5. integral response calculated by ONEDANT, using an $\rm S_{32}$ quadrature set, eight intervals per zone and a 10^{-4} convergence precision.

The response functions in Table XII are in good agreement (maximum difference 0.6%). The standard cross-section sensitivity profiles for the EQ $_6$, EQ $_{12}$, and EQ $_{16}$ calculations are reproduced in Tables XIIIa, XIIIb, and XIIIc. The integral sensitivity for the EQ $_6$ case is 5% different from the EQ $_{12}$ case for AXS (absorption cross-section sensitivity profile) and 5% different for N-GAIN (outscattering cross-section sensitivity profile). The results obtained from the EQ $_{12}$ calculation are in good agreement with those obtained from the EQ $_{16}$ calculation. The sensitivity profiles for the EQ $_{12}$ case (10 $^{-4}$ convergence precision) and the EQ $_{12}$ case (10 $^{-4}$ convergence precision, eight triangles per zone) are not shown. They are nearly identical with Table XIIIb.

TABLE IIIa: STANDARD CROSS-SECTION SENSITIVITY PROFILES CALCULATED BY SENSIT-2D FOR THE EQ-6 CASE (CONVERGENCE PRECISION 0.001, 4 TRIANGLES PER ZONE) FOR SAMPLE PROBLEM #2

GROUP UPPER-E(EY) DELTM 1 1.000E+01 6.93E 2 5.000E+00 1.61E 3 1.000E+00 6.93E	-01 -4.632E-02 0. -00 -4.532E-03 0.	5 S T E R M S *********************************	N-GAIN N-GAIN(SED) NG-GAIN 1.549E-01 1.155E-01 0. 1.186E-02 2.196E-02 0. 2.264E-02 3.677E-02 0.
GROUP UPPER-E(EV) DELTA 1 1.800E+01 6.93E 2 5.908E+08 1.61E 3 1.800E+08 6.93E	01 -3.039E-02 -7.671E-02 00 -1.731E-03 -6.263E-03		

TABLE XIIIb: STANDARD CROSS-SECTION SENSITIVITY PROFILES CALCULATED BY SENSIT-2D FOR THE EQ-12 CASE (CONVERGENCE PRECISION 0.001, 4 TRIANGLES PER ZONE) FOR SAMPLE PROBLEM #2

GROUP UPPER-E(EV) 1 1.080E+01 2 5.000E+08 3 1.000E+08	DELTA-U 6.93E-01 1.61E+00 6.93E-01	AXS -4.329E-02 -4.366E-03 -1.103E-02	RE LOS NU-FISS 0. 0.	5XS -1.731E-01 -1.310E-02	TXS -2.164E-01 -1.746E-02	N-GAIN 1.458E-01 1.143E-02 2.207E-02	RE GAIN TERME N-GAIN(SED) 1.075E-01 2.125E-02 3.761E-32	NG-GAIN 8. 0.
INTEGRAL		-4.468E-82	0.	-1.564E-01	-2.811E-81	1.348E-01	1.348E-01	в.
		MONOR NET PR	OFILES ***					
GROUP UPPER-E(EV)	DELTA-U	SEN	SENT					
1 1.8805+01	6.93E-01	-2.731E-02	-7.060E-B2					
2 5.00d5+ 0 0	1.61E+08	-1.668E-03	-6.034E-03					
3 1.000E+00	6.93E-01	8.040E-07	-1.183E-82					
INTEGRAL		-2.161E-02	-6.629 E- 8 2					

TABLE XIIIc: STANDARD CROSS-SECTION SENSITIVITY PROFILES CALCULATED BY SENSIT-2D FOR THE EQ-16 CASE (CONVERGENCE PRECISION 0.001, 4 TRIANGLES PER ZONE) FOR SAMPLE PROBLEM #2

GROUP UPPER-E(EV) 1 1.8887-01 2 5.888E+08 3 1.888E+08	DELTA-U 6.93E-81 1.61E+00 6.93E-01	AXS -4.298E-82 -4.330E-83 -1.894E-82	RE LOS NU-F1SS 0. 8.	SXS -1.716E-01 -1.299E-02	TXS -2.145E-81 -1.732E-02 -3.281E-02	N-GAIN 1.443E-81 1.133E-02 2.187E-02	RE GAIN TERM N-GAIN(SED) 1.062E-01 2.109E-02 3.732E-02	NG-GAIN B. 6.
INTEGRAL		-4.4295-02	8.	-1.550E-01	-1.993E-01	1.334E-01	1.334E-01	0.
		MONOR NET PR	OFILES *****					
GROUP UPPER-E(EV)	DELTA-U	SEH	SENT					
1 1.000E+01	6.93E-81	-2.734E-02	-7.8245-82					
2 5.000E+00	1.61E+00	-1.658E-03	-5.988E-83					
3 1.608E+08	6.93E-81	-1.484E-06	-1.094E-02					
INTEGRAL		-2.162F-82	-6.591E-82					

Note that the net sensitivity profiles SEN (= SXS + N-GAIN) for group 3 are respectively 3.252×10^{-6} , 8.040×10^{-7} , and 1.484×10^{-6} for the EQ₆, the EQ₁₂, and the EQ₁₆ case. The large discrepancies here can be attributed to the fact that those quantities result from subtracting two numbers that are nearly equal in magnitude.

It can be concluded from Tables XII and XIII that even when the integral responses differ by less than 0.4%, the sensitivity profiles can differ by as much as 5% between an EQ $_6$ and an EQ $_{12}$ calculation. The close agreement between the results from the EQ $_{12}$ and the EQ $_{16}$ calculation suggest that this difference is probably due to the fact that the angular fluxes in the EQ $_6$ calculation are not yet fully converged. Indeed, choosing the higher-order anisotropic scattering cross sections equal to the isotropic components is unphysical. The convergence criteria used in ONEDANT and TRIDENT-CTR do guarantee convergence for the scalar fluxes, but not for the higher-order flux moments.

5.2.2 Comparison between the two-dimensional and one-dimensional analysys of sample problem #2

The cross-section sensitivity profiles resulting from a one-dimensional analysis (S_{12} quadrature set, 10^{-4} convergence precision and four intervals per zone; S_{32} quadrature set, 10^{-4} convergence precision and eight intervals per zone) are compared with those obtained from a two-dimensional analysis (EQ₁₂ quadrature set, 10^{-4} convergence precision and eight triangles per zone in Tables XIVa, .IVb, and XIVc.

TABLE XIVa: STANDARD CROSS-SECTION SENSITIVITY PROFILES CALCULATED BY SENSIT FOR THE S-12 CASE (CONVERGENCE PRECISION 0.0001, 4 INTERVALS PER ZONE) FOR SAMPLE PROBLEM #2

	***** P U	RE LDS		s ••••••
PURE GAIN TERMS	*******			
SMOUP UPPER-ELEV) DELTA-U	AKS	NUTFISS	SXS	TES
N-GAIN N-GRIN(SED)	NG-GAIN			
1 1.000E+01 6.93E-01	-4.284£-02	0.	-1.713E-01	-2.142E
+01 1.351E-01 9.920E-02	0.			
2 5.000m+00 1.61m+00	-4.357E-03	0.	-1.307E-UĒ	-1.743E
-02 1.140E-02 2.039E-02	0.			
3 1.000E+00 6.93E-01	-1.101E-02	0.	-2.20cm-02	-3,303E
-02 2.234E-02 3.733E-02	0.			
	,			
INTESPAL	-4.433E-02	0.	-1.551E-U1	-1.994E
-01 1.274E-01 1.274E-01	0.			
	++++ NET PR	OFILES ****		
GROUP UPPER-E(EV) DELTA-U	SEN	SENT		
1 1.000e+01 6.93e-01		-7.912e-02		
2 5.000E+00 1.61E+00		-6.026€ -03		
3 1.000e+00 6.93e-01	3.232E-04	-1.069E-02		
INTEGRAL	-2.762E-02	-7.195E-02		

TABLE XIVb: STANDARD CROSS-SECTION SENSITIVITY PROFILES CALCULATED BY SENSIT FOR THE S-32 CASE (CON-VERGENCE PRECISION 0.0001, 8 INTERVALS PER ZONE) FOR SAMPLE PROBLEM #2

GROUP UPPER-E(EV) DELTA 1 1.8082+01 6.936 2 5.8002+08 1.616 3 1.800E+00 6.936	-01 -4.215E-02 0. +00 -4.277E-03 0. -01 -1.081E-02 0.	5X5 TXS -1.686E-01 -2.107E-01 -1.203E-02 -1.711E-02 -2.161E-02 -3.242E-02	### GRIN TERMS ####################################
INTEGRAL	-4.359E-02 0.	-1.525E-01 -1.961E-01	1.236E-01 1.236E-01 0.
	MONOR HET PROFILES MANY	t	
GROUP UPPER-E(EV) DELTA			
1 1.000E+01 6.93E			
2 5.000:+00 1.618	+00 -1.551E-03 -5.829E-03	,	
3 1.000E+00 6.93E	-01 5.9898-04 -1.8218-02		
INTEGRAL	-2.891E-02 -7.250E-02	!	

TABLE XIVe: STANDARD CROSS-SECTION SENSITIVITY PROFILES CALCU CALCULATED BY SENSIT-2D FOR THE EQ-12 CASE (CON-VERGENCE PRECISION 0.0001, 8 TRIANGLES PER ZONE) FOR SAMPLE PROBLEM #2

		**************************************	RE LOS	S TERM	2 specializations	SOUDHANDOOR PU	IRE GAIN TERM	5 NOTHICKE PRACTICAL
GROUP UFPER-E(EV)	DELTA-U	AXS	NU~F155	SXS	TXS	N-GAIN	N-GAIN(SED)	NG-GAIN
1 1.00UE+01	6.93E-01	-4.324E-02	₿.	-1.730E-01	-2.162E-81	1.457E-81	1.074E-01	8.
2 5.000E+00	1.61E+00	-4.362E-03	0.	-1.309E-02	-1.745E-82	1.142E-82	2.123E-62	8.
3 1.000E+00	6.93E-01	-1.102E-02	ø.	-2.203E-02	-3.305E-02	2.203E-02	3.755E-02	0.
INTEGRAL		-4.463E-02	е.	-1.562E-01	-2.009E-81	1.346E-01	1.34úE-01	0.
		MONTH NET PR	OFILES MINNE					
GROUP UPPER-E(EV)	DELTA-U	SEN	SENT					
1 1.8U9E+01	6.93E-01	-2.727E-02	-7.051E-02					
2 5. 000E+00	1.61E+00	-1.662E-03	-C.038E-03					
3 1.888E+88	6.93E-01	7.918E-07	-1.1820-82					
INTEGRAL		-2.158E-Ø2	-6.621E-82					

Note that the N-GAIN integral sensitivity differs by about 6% between Table XIV b and XIV c. The integral net sensitivity shows a 35% difference for SEN (= SXS + N-GAIN) and a 10% difference for SENT (= TXS + N-GAIN) between the one-dimensional and the two-dimensional analysis. The bulk part of this large difference for the integral net sensitivity results from the subtraction of two numbers that are nearly equal in magnitude. A comparison of N-GAIN (integral) in Tables XIV a, XIV b, and XIV c suggests that - even with an S₃₂ quadrature set - the one-dimensional calculation is not yet fully converged.

$\frac{5.3.2\ \text{Comparison}}{\chi\text{'s resulting from flux moments}}$

The χ 's (or the loss term of the cross-section sensitivity profile) can be evaluated based on flux moments (Eq. 58) or based on angular fluxes (Eq. 57). A calculation based on flux moments requires less computing time, less computer memory, and less data transfer. To have an idea of the order of expansion of the angular fluxes in flux moments necessary to reach a reasonable accuracy, the χ 's resulting from angular fluxes are compared with those obtained from a P-0, P-1, P-2, . . .,P-17 spherical harmonics expansion of the angular fluxes (Table XV). It is found that for any expansion of order greater than P-0, there is good agreement (less than 1% difference for $\Sigma \chi^8$). For very high spherical harmonics expansions (P-15 and higher) there is divergence. This divergence can be avoided by doing the computations in quadruple precision.

TABLE XV: COMPARISON BETWEEN THE CHI'S CALCULATED FROM ANGULAR FLUXES AND THE CHI'S CALCULATED FROM FLUX MOMENTS

χ^{1}^{a}	x ²	χ^3	$\left \begin{array}{cccc} \Sigma(\chi_{\text{mom}}^{g} - \chi_{\text{ang}}^{g}) \\ \end{array} \right $
889.88	83.382	45.352	-
796.63	76.811	41.898	103.275
880.43	83.755	45.524	8.905
868.78	83.054	45.326	21.454
884.11	83.374	45.353	5.777
884.58	83.388	45.364	5.282
886.82	83.385	45.357	2.052
888.82	83.389	45.354	1.051
889.16	83.381	45.353	0.720
889.78	83.381	45.352	0.101
889.74	83.382	45.352	0.140
889.91	83.383	45.352	0.031
890.01	83.385	45.351	0.133
889.89	83.382	45.351	0.009
898.27	83.573	45.431	8.610
938.59	83.100	46.203	51.279
951.85	85.617	46.416	65.269
	889.88 796.63 880.43 868.78 884.11 884.58 886.82 889.16 889.78 889.74 889.91 890.01 889.89 898.27 938.59	889.88 83.382 796.63 76.811 880.43 83.755 868.78 83.054 884.11 83.374 884.58 83.388 886.82 83.385 888.82 83.389 889.16 83.381 889.78 83.381 889.78 83.381 889.79 83.382 889.91 83.383 890.01 83.385 889.89 83.382 898.27 83.573 938.59 83.100	889.88 83.382 45.352 796.63 76.811 41.898 880.43 83.755 45.524 868.78 83.054 45.326 884.11 83.374 45.353 884.58 83.388 45.364 886.82 83.385 45.357 888.82 83.389 45.354 889.16 83.381 45.353 889.78 83.381 45.352 889.74 83.382 45.352 889.91 83.383 45.352 890.01 83.385 45.351 889.89 83.382 45.351 898.27 83.573 45.431 938.59 83.100 46.203

a χ^1 mean χ for group 1

The small differences in Table XV indicate that the loss term of the sensitivity profile can indeed be calculated based on a low-order spherical harmonics expansion of the angular fluxes.

$\underbrace{\text{5.2.4}}_{\text{low c}}$ Evaluation of the loss term based on flux moments in the case of

The question whether the χ 's can be computed with adequate accuracy from Eq. (58) in the case of low c (mean number of secondaries per collision) was raised. Based on an analytical one-dimensional analysis of the half-space problem (one group) with a mono-directional boundary source, it was found that for c less than 0.8, a low-order spherical harmonics expansion of the angular flux would lead to erroneous results in the χ 's.

In order to confirm the analytical study, sample problem #2 was reexamined with a different cross-section table. The corresponding c's
were 0.5 for the high-energy group, 0.4 for the second group, and 0.33
for the low-energy group. The x's calculated based on flux moments were
still in agreement with those obtained from the angular fluxes (even for
a P-1 expansion). An explanation for this paradoxical behavior is probably related to the use of a distributed volumetric source in sample
problem #2, whereas the conclusions drawn in the analytical evaluation
were based on the presence of a mono-directional boundary source.

5.3 Conclusions

The rigorous study of the two sample problems indicates that there is good agreement between the one- and two-dimensional analysis. Wherever discrepancies appear, a plausible explanation can be provided. Ultimately, the comparison between a one- and two-dimensional study proves to be a sound debugging procedure for SENSIT-2D as well as for the SENSIT code.

For the flux moments versus the angular fluxes comparison for the evaluation of the χ 's, there is a strong indication that the loss term can be calculated from lower-order flux moments (P-1) as well as from angular fluxes. By the same token, a P-1 sensitivity and uncertainty analysis seems to provide sufficient accuracy.

The study of the influence of the quadrature sets on the sensitivity profiles reveals the importance of the angular-flux convergence in ONEDANT and TRIDENT-CTR. Furthermore, some doubts about the meaning-fulness and practicality of the net sensitivity profile (SEN) can be raised.

6. SENSITIVITY AND UNCERTAINTY ANALYSIS OF THE HEATING IN THE TF COIL FOR THE FED

In this part a secondary energy distribution and a vector cross-section sensitivity and uncertainty analysis will be performed for the heating of the TF coil in the inner shield of the FED. The results obtained from the two-dimensional analysis will be compared with selected results from a one-dimensional model. The blanket design for the FED is currently in development at the General Atomic Company. 82,83

6.1 Two-Dimensional Model for the FED

The two-dimensional model for the FED in r-z geometry is illustrated in Fig. 12, and is documented in more detail in reference 84. The material composition is shown in Table XVI. In the forward TRIDENT-CTR model, which was set up by W. T. Urban, 84 the standard Los Alamos 42 coupled neutron/gamma-ray group structure was used. 85 There are 30 neutron groups and 12 gamma-ray groups. The TRIDENT-CTR model 84 (Fig.

TABLE XVI. ATOM DENSITIES FOR THE ISOTOPES USED IN THE MATERIALS (atom/b cm)

		MATERIAL						
Isotope	SS316	TFCOIL	SS304	CNAT	IHDLC	IHDLB	IHDLA	SS312
H-1		3.79E-3			5.03E-2	1.34E-2	1.68E-3	
He~4		6.67E-3						
B-10		2.98E-5						
B-11		1.20E-4						
С		1.90E-3		8.03E-2				
0-16		2.17E-3			2.51E-2	6.70E-3	8.38E-4	
A1-27		1.81E-4						
Si		5.59E-4						
Ca		2.42E-4						
Cr	1.67E-2	5.97E-3	1.77E-2		4.18E-3	1.34E-2	1.63E-2	3.34E-3
Mn-55	1.75E-3	6.27E-4	1.67E-3		4.38E-4	1.40E-3	1.71E-3	3.50E-4
Fe	5.44E-2	1.95E-2	6.06E-2		1.36E-2	4.35E-2	5.30E-2	1.09E-2
Ni	1.15E-2	4.12E-3	7.40E-3		2.88E-3	9.20E-3	1.12E-2	2.30E-3
Cu		2.11E-2						
Nb-93		2.44E-4						
Mo	1.51E-3	5.41E-4			3.78E-4	1.21E-3	1.47E-3	3.02E-4

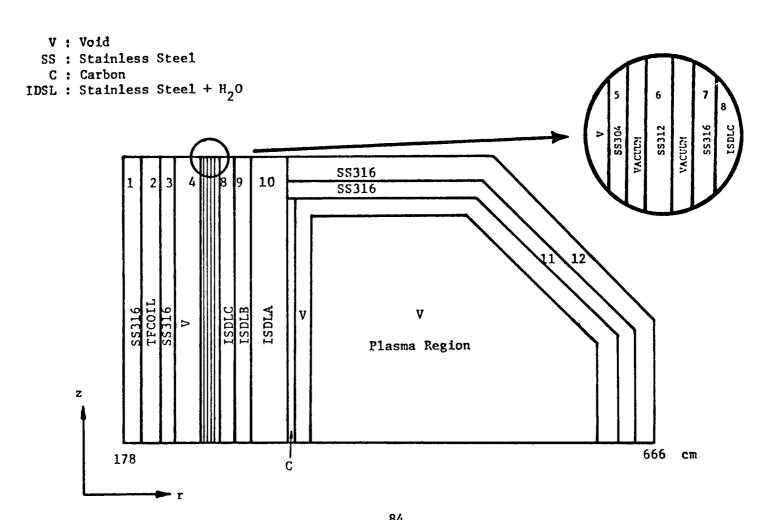


Figure 12. Two-dimensional model for the FED 84

The numbers within each zone indicate the zone number.

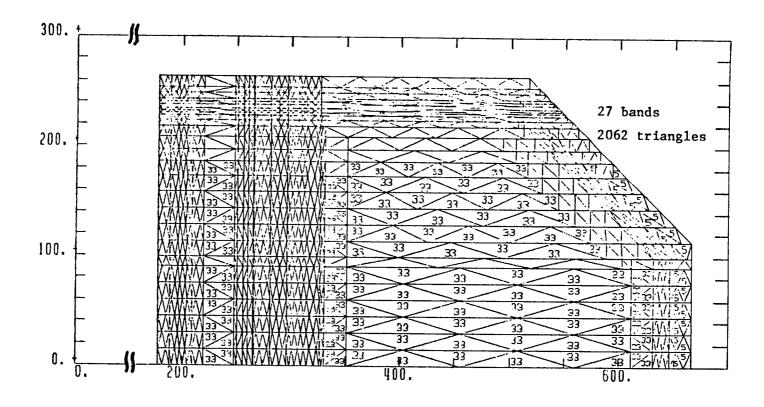


Figure 13. The TRIDENT-CTR band and triangle structure for the FED

13) utilizes 2062 triangles, divided over 27 bands. The response functions for calculating the heating in the TF coil, were prepared by the TRANSXX code. Those response functions will be the sources for the adjoint calculation. It was noted earlier that negative sources can introduce instabilities in the sweeping algorithm for the adjoint TRIDENT-CTR calculation. The negative kerma factors are therefore set to zero. This will have a minor effect on the total heating calculated in the TF-coil (less than 1%).

EQ-2 and EQ-8 quadrature sets are used for groups 1 and 2 respectively, EQ-3 is used for groups 3, 4, and 5, while an EQ-4 quadrature set is utilized for the remaining groups. The convergence precision is specified to be 10^{-3} . The gamma-ray groups contribute most to the heating in the TF coil (93%). The total heating in the TF coil is 823 × 10^{-6} MW.

The heating calculated by the adjoint TRIDENT-CTR calculation is found to be 3% smaller than the heating resulting from the forward run. The forward calculation required about one hour of c.p.u. time on a CDC-7600 computer, while the adjoint run took about four hours. Groups 11 to 23 required significantly more inner iterations in the adjoint mode than the other groups. No explanation of this behavior could be found. Experience with other neutronics codes indicates that the adjoint mode for this type of calculation requires usually no more than 30% extra calculation time.

6.2 Two-Dimensional Sensitivity and Uncertainty Analysis for the Heating in the TF Coil due to SED and Cross-Section Uncertainties

A secondary energy distribution and vector cross-section uncertainty analysis was performed with SENSIT-2D using the forward and adjoint angular flux files created by TRDSEN. A separate SENSIT-2D run is required for each zone. Because separate runs are necessary for a cross-section and a SED analysis, a total of 22 SENSIT-2D cases were analyzed. A total of 15 minutes c.p.u. time was used by SENSIT-2D. The bulk of this time is consumed during input/output manipulations.

The median energies and fractional uncertainties for the SED uncertainty calculations were taken from Table II. 45 A special cross-section table was created - using TRANSX - for the SED analysis. COVFILS 33 data were used for generating the covariance matrices utilized in the cross-section uncertainty evaluation. Only 0-16, C, Fe, Ni, Cr, and Cu were considered for the SED uncertainties, while H, Fe, Cr, Ni, B-10, C, and Cu were included for the cross-section uncertainties. With the exception of oxygen, no important materials were left out. It was found in an earlier study that the cross-section uncertainties for oxygen caused an 8% uncertainty in the heating. 45 The current version of SENSIT-2D does not include the option to extract the covariance data for oxygen from COVFILS.

The gamma-ray cross sections are generally better known than the neutron cross sections. Therefore, only the uncertainties resulting

from uncertainties in neutron cross sections are calculated. Throughout this analysis a third order of anisotropic scattering is used.

The predicted uncertainties in the heating of the TF-coil are summarized in Table XVII. It was assumed that the uncertainties for a particular element in the various SS316 zones (1, 3, 7, 11, and 12 in Fig. 12) are fully correlated, while all other uncertainties were assumed to be noncorrelated. This implies that the uncertainties for a particular element can be added over all SS313 zones, while all the other uncertainties are added quadratically. The approach of either assuming full correlation or assuming noncorrelation is rather simplistic. Translating the physics of this particular problem into a more sophisticated correlation scheme would be a major study by itself. The uncertainties resulting from the uncertainties in the cross sections for Cr, Fe, and Ni in the SS316 zones are reproduced in Table XVIII.

From Table XVII it can be concluded that the cross-section uncertainties (predicted to be 113%) tend to be more important than the SED uncertainties (20%). Even when the overal uncertainty seems to be relatively large (115%), the blanket designer is able to set an upper bound for the heating in the TF coil. The largest uncertainties are due to uncertainties in the Cr cross sections. A more detailed look at the computer listings generated by this analysis reveals that the largest uncertainties are produced by uncertainties in the total Cr and the elastic Cr scattering cross sections. The heating is less sensitive to Cr than to Fe. This indicates that the calculated uncertainty is largely due to the fact that Cr has very large covariances. A re-evaluation

TABLE XVII: PREDICTED UNCERTAINTIES (STANDARD DEVIATION) DUE TO ESTIMATED SED AND CROSS-SECTION UNCERTAINTIES FOR THE HEATING IN THE TF COIL (part 1)

Cross Section Material Zone		SED Uncertainties in % $\left[\frac{\Delta R}{R}\right]_{Mat,region}^{*}$ Mat		XS Uncertainties in % $\left[\frac{\Delta R}{R}\right]_{Mat, region} \left[\frac{\Delta R}{R}\right]_{Mat}$	
Cr	SS316 TFCOIL SS304 SS312 ISDLC ISDLB ISDLA	3.8 0.2 0.1 0.0 0.2 0.8 3.0	4.9	60.0 34.5 4.5 1.1 2.2 33.3 58.5	96.7
Fe	SS316 TFCOIL SS304 SS312 ISDLC ISDLB ISDLA	14.8 0.1 0.0 0.2 0.5 2.7 10.8	18.4	18.9 10.4 2.2 0.7 4.4 23.6 34.5	47.3
Ni	SS316 TFCOIL SS304 SS312 ISDLC ISDLB ISDLA	1.5 0.7 0.0 0.0 0.0 0.4 1.2	4.3	18.6 11.8 0.9 0.4 1.3 13.4 18.0	31.4

^{*} Quadratic Sums

TABLE XVII: PREDICTED UNCERTAINTIES (STANDARD DEVIATION) DUE TO ESTIMATED SED AND CROSS-SECTION UNCERTAINTIES FOR THE HEATING IN THE TF-COIL (part 2)

Cross Section Material Zone		SED Uncertaint $\left[\frac{\Delta R}{R}\right]_{Mat,region}$		XS Uncertainties in $\%$ $\begin{bmatrix} \Delta R \\ R \end{bmatrix}$ Mat, region $\begin{bmatrix} \Delta R \\ R \end{bmatrix}$ Mat		
н	TFCOIL ISDLC ISDLB ISDLA	- - -	-	1.7 6.0 3.7 0.5	7.2	
0	TFCOIL ISDLC ISDLB ISDLA	0.1 0.2 0.1 0.1	0.3		-	
C	TFCOIL C-region	0.0 0.3	0.3	0.1 3.2	3.2	
В	TFCOIL	-	_	0.0	0.0	
Cu	TFCOIL	2.9	2.9	10.1	10.1	
Total*			19.7		112.9	

Total uncertainty due to cross-section uncertainties and SEDs = 114.6%

^{*} Quadratic Sums

TABLE XVIII: PREDICTED SED AND CROSS-SECTION UNCERTAINTIES IN THE TF COIL DUE TO UNCERTAINTIES IN THE SS316 ZONES

Cross Section		SED Uncertaint		XS Uncertainties in %		
Mater	ial Zone	$\left[\frac{\Delta R}{R}\right]_{Mat,region}$	AR Mat	$\left[\frac{\Delta R}{R}\right]_{Mat,region}$	[ΔR] * R] _{Mat}	
Cr	1 3 7 11 12	0.1 0.7 0.0 3.0 0.0	3.8	12.0 45.5 0.8 4.3 0.4	60.0	
Fe	1 3 7 11 12	0.5 3.1 0.1 11.0 0.1	14.8	2.3 11.3 0.7 4.3 0.3	18.9	
Ni	1 3 7 11 12	0.0 0.3 0.0 1.2 0.0	1.5	3.6 12.8 0.3 1.8 1.1	18.6	

of the covariance data for Cr is highly recommended. If new covariance data would not reduce the predicted uncertainty, new experiments for measuring the Cr cross sections are suggested. The conclusions drawn here are consistent with an earlier study of a similar design. 45

The SED uncertainties, although less relevant to overall predicted uncertainty, tend to become more important in the outboard shield (region 11 in Table XVIII). An explanation for this behavior is related with the fact that the heating in the TF coil will be very sensitive to backscattering in this region. An SAD (secondary angular distribution) sensitivity and uncertainty analysis might lead to very interesting results.

The χ 's for the region near to the plasma in the outboard shield are calculated for each group based on angular fluxes and based on flux moments (Table XIX). Both methods lead generally to the same χ 's. The difference for the upper neutron groups might indicate that a third-order spherical harmonics expansion of the angular flux tends to become inadequate, due to the peaked shape of the angular flux close to the source region. In this particular study no serious error in the calculation of the uncertainties would have been introduced if the loss term of the sensitivity profile would have been calculated from flux moments. For a situation where the angular flux would have a pronounced peaked behavior, it would be highly desirable to evaluate the χ 's based on angular fluxes.

It is obvious from Table XIX that some fluxes in the lower gammaray groups (groups 41 and 42) are negative. Since only neutron sensitivity profiles are utilized to calculate uncertainties, this will not affect the results.

6.3 Comparison of the Two-Dimensional Model with a One-Dimensional Representation

The results obtained from the two-dimensional sensitivity and uncertainty analysis will be compared with those of a one-dimensional analysis in selected regions (Table XX). The uncertainties in the heating in the TF coil due to the uncertainties in the Cr, Ni, and Fe cross-sections and secondary energy distributions will be calculated with ONEDANT and SENSIT in zone 1 and zone 3 (Fig. 12). The one-dimensional model for ONEDANT is straightforward. The total heating calculated in the TF-coil is 1043×10^{-6} MW (compared to 823×10^{-6} MW for the two-dimensional model). In this comparison the uncertainties calculated by SENSIT will be normalized to the response calculated in the two-dimensional model.

It can be concluded from Table XII that the calculated uncertainties agree reasonably well for zone 3. There are substantial differences for the results in zone 1. The reason for those differences is probably related with the fact that the one-dimensional model is not adequate for calculating the overall heating in the TF coil (especially

TABLE XIX: COMPARISON BETWEEN THE X's CALCULATED FROM ANGULAR FLUXES (UPPER PART) AND THE X's RESULTING FROM FLUX MOMENTS (LOWER PART) FOR REGION 11 (SS316)

```
+ + + TEST PRINTOUT FOR THE CHI'S + + +
***K = 1***
              .13195E-05
                         .17957E-06 .67647E-07
٥.
                                                 .86778E-07 .79271E-07
 .21326E-06
              .19166E-06
                         .32175E-06
                                      .40693E-06
                                                  .48797E-06
                                                               .15589g-05
 .22361E-05
             .14093E-05
                         .18633€-06
                                      .37795E-06 .10788E-06
                                                               .17607€-07
                         .28276E-U8
 .86888£-08
             .68189E-08
                                      .17886E-08
                                                 .12639E-08
                                                               .54245E-09
                          .12122E-UY
 .49433E-09
              .26407E-09
                                      .48579E-10
                                                 .16319E-10 .47290E-11 .49747E-10 .26669E-10
 .24385E-10
             .71906E-10
                         .12091E-U9
                                      .66533E-10
 .13096E-10 .22933E-11 .1485UE-12 .22953E-16 -.51897E-23 -.28794E-48
```

```
+++++ CHI'S GENERATED FROM FLUX HOMENTS ++++++
+ + + TEST PRINTOUT FOR THE CHI'S + + +
**** 1 + **
                                                                      .78798E-07
                .10555E-05 .17003E-06 .59837E-07 .81854E-07
 0.
                                                        .48798E-06
                                                                      .15592e-05
  .21318E-06 .19164E-06 .32167E-U6 .40689E-06
                             .18630E-U6 .37797E-06
.28273E-U8 .17886E-08
               .14096E-05
  .22366E-05
                                                         .10788E-06
                                                                      .17605E-07
               .68187€-08
                                                         .12638E-08
                                                                       .54232E-09
  .86885€-08
  .49424E-09
               .26401E-09
                             .12118E-09 .48553E-10 .16304E-10
                                                                      .47171E-11
  .24438E-10 .71918E-10 .13135E-10 .29048E-11
                            .12068E-09 .66705E-10 .49849E-10 .26296E-10 .18631E-12 .26240E-16 -.52915E-23 -.45116E-48
```

The X's are ordered by group (high neutron energy to low neutron energy; high gamma-ray energy to low gamma-ray energy)

TABLE XX: PREDICTED UNCERTAINTIES (STANDARD DEVIATION) DUE TO ESTIMATED SED AND CROSS-SECTION UNCERTAINTIES IN ZONES 1 AND 3 FOR THE HEATING IN THE TF-COIL

Cross Section Material Zone		SED Uncertains $ \begin{bmatrix} \frac{\Delta R}{R} \\ \end{bmatrix}_{\text{Mat,zone}} $ 1-D	ties in % $ \left[\frac{\Delta R}{R} \right]_{\text{Mat}}^{\overset{*}{R}} $ 2-D	XS Uncertaint \[\begin{aligned} \begin{aligned} \triangle \ \triangle \ \	ties in % $\begin{bmatrix} \Delta R \\ \overline{R} \end{bmatrix}_{\text{Mat}}^{\overset{*}{R}}$ 2-D
Cr	1 2	0.1	0.1 0.7	29.3 44.8	12.0 42.5
Fe	1	0.8 2.6	0.5 3.1	4.5 9.6	2.3
Ni	1	0.0 0.2	0.0	8.3 13.1	3.6 12.8

the source region is poorly simulated in the one-dimensional representation). A more relevant sensitivity analysis would be to consider the heating calculated at the hottest spot in the TF coil. The hottest spot is in the center plane of the toroid. We would expect that the one-dimensional model would be an adequate representation in this case.

7. CONCLUSIONS AND RECOMMENDATIONS

Expressions for a two-dimensional SED (secondary energy distribution) and cross-section sensitivity and uncertainty analysis were developed. This theory was implemented by developing a two-dimensional sensitivity and uncertainty analysis code SENSIT-2D. SENSIT-2D has a design capability and has the option to calculate sensitivities and uncertainties with respect to the response function itself. A rigorous comparison between a one-dimensional and a two-dimensional analysis for a problem which is one-dimensional from the neutronics point of view, indicates that SENSIT-2D performs as intended. Algorithms for calculating the angular source distribution sensitivity and secondary angular distribution sensitivity and uncertainty are explained.

The analysis of the FED (fusion engineering device) inboard shield indicates that, although the calculated uncertainties in the 2-D model are of the same order of magnitude as those resulting from the 1-D model, there might be severe differences. This does not necessarily imply that the overall conclusions from a 1-D study would not be valuable. The more complex the geometry, the more compulsory a 2-D analysis becomes.

The most serious source of discrepancies between a 1-D and a 2-D study are related to the difficulty of describing a complex geometry adequately in a one-dimensional model. However, several neutronics related aspects might introduce differences. The use of different quadrature sets - especially when streaming might be involved - could lead to different results. When the angular fluxes have a pronounced peaked behavior, the angular flux option for calculating the loss term of the sensitivity profile will provide a better answer than the flux moment option. The different sweeping algorithms and code characteristics used by the 1-D and 2-D transport codes might be another cause of discrepancies in the results. Needless to say, a meaningful transport calculation is compulsory in order to obtain reliable results from a sensitivity and uncertainty analysis.

The results from the FED study suggest that the SED uncertainties tend to be smaller than those generated by cross-section uncertainties. It has been pointed out 45 that, because all secondary particle production processes for a particular element are presently treated as one single process, the simplicity of the hot-cold concept for SED sensitivity might mask several causes of a larger uncertainty than calculated by SENSIT or SENSIT-2D. A more elaborate algorithm for a SED analysis, as an alternative to the hot-cold concept, a separate treatment for the various particle production processes involved, or a combination of both, would eliminate this deficiency. Even with the hot-cold model, which might underestimate SED uncertainties, the SEDs might become the dominant cause of the calculated uncertainty in the case that the

response function is a threshold reaction or in the case that backscattering becomes important. In this latter situation, an SAD (secondary angular distribution) analysis might also contribute significantly to the overall uncertainty estimate. At present, the required cross-section data are not arranged in the proper format to do this type of study.

Sensitivity and uncertainty analysis estimates the uncertainty to a calculated response. It would be more meaningful to be able to implement those uncertainties with a confidence level. In order to do this, we have to know how reliable the covariance data are, what the effects of errors resulting from the transport calculations will be, and what the limits of first-order perturbation theory are. It was assumed in this study that the uncertainties, resulting from uncertainties in different regions, were either fully correlated or not correlated at all, depending on whether these regions have the same or a different material constituency. The evaluation of reliable correlation coefficients would be a major effort by itself.

The validity of an uncertainty analysis is often limited more due to the lack of the proper cross-section covariance data, than due to the lack of representative mathematical formalisms. Covariance data for several materials are still missing, or just guesstimates (e.g., Cu)³³. The fractional uncertainties required for an SED analysis are evaluated for just a few materials and are not available for the various individual particle production processes.

The current version of SENSIT-2D cannot yet access all the covariance data available in COVFILS, 33 but will be able to do so in the future. Even when SENSIT-2D does not require a lot of computing time, the extra amount of c.p.u. time required by the adjoint TRIDENT-CTR run makes a two-dimensional sensitivity and uncertainty analysis demanding when it comes to computer resources. The development and implementation of acceleration methods for TRIDENT-CTR are therefore desirable. A sensitivity analysis involves a tremendous amount of data management. A mechanization of the various steps required, by the development of an interactive systems code, would provide a more elegant procedure for sensitivity and uncertainty analysis.

The algorithms to perform a higher order sensitivity analysis have been developed, but are still too complicated to be built into a computer program for general applicability. The increasing number of transport equations to be solved prohibits the incorporation of present higher order sensitivity schemes in a two-dimensional code. An effort to develop simple algorithms for higher order sensitivity can certainly be justified, however.

It becomes obvious that several flaws can be found in the state of the art of sensitivity and uncertainty analysis. Removing any one of them would require a major commitment.

ACKNOWLEDGEMENTS

The author would like to thank the chairman of his committee, Dr. J. R. Thomas, for the guidance received during this pursuit for a higher education, the other members of his committee for their interest in this work and their contribution to its completion, and Dr. D. J. Dudziak from Los Alamos National Laboratory for his daily supervision and invaluable advice.

The author is obliged to Dr. T. J. Seed, Dr. S. A. W. Gerstl, Dr. W. T. Urban, Dr. E. W. Larson, Mr. D. R. Marr, Mr. F. W. Brinkley, Jr., and Dr. D. R. McCoy for their assistance with Los Alamos codes, and the various discussions that were essential for the completion of this work. Thanks go to Dr. C. S. Caldwell and Dr. W. G. Pettus from Babcock and Wilcox for pointing out the need for sensitivity analysis and their continued interest.

The encouragement received from his parents, Professor W. Geysen, Professor and Mrs. W. Glasser, Mr. and Mrs. C. Kukielka, Mr. R. Florian, Mr. and Mrs. M. Goetschalckx, and Mr. and Mrs. M. Denton, is highly appreciated.

The author acknowledges Professor D. P. Roselle, the Dean of the graduate School at Virginia Polytechnic Institute, for the Pratt Presidential fellowship, Dr. D. I. Walker from Associated Western Universities, for the A. W. U. fellowship, which made his stay at the Los Alamos National Laboratory possible, and the Los Alamos National Laboratory for the use of their facilities. Special funding of the AWU fellowship by the DOE Office of Fusion Energy is gratefully acknowledged. Thanks go to Mrs. Mary Plehn, who prepared the manuscript.

8. REFERENCES

- 1. W. A. REUPKE, "The Consistency of Differential and Integral Thermonuclear Neutronics Data," Los Alamos Scientific Laboratory report LA-7067-T (1978).
- 2. R. W. PEELLE, Uncertainty in the Nuclear Data Used for Reactor Calculations, book to be published.
- 3. C. W. MAYNARD, "Integral Experiments for CTR Nuclear Data," Symposium on Neutron Cross Sections from 10-40 MeV," July 1977, Brookhave, NY (BNL-NCS-50681).
- 4. R. L. CHILDS, D. E. BARTINE, and W. W. ENGLE, Jr., "Perturbation Theory and Sensitivity Analysis for Two-Dimensional Shielding Calculations," Transactions American Nuclear Society, 21, 543-544 (1975).
- 5. R. L. CHILDS, "Generalized Perturbation Theory Using Two-Dimensional, Discrete Ordinates Transport Theory," Oak Ridge National Laboratory report ORNL/CSD/TM-127 (1980).
- 6. T. J. SEED, "TRIDENT-CTR: A Two-Dimensional Transport Code for CTR Applications," Proceedings on the Third Topical Meeting on the Technology of Controlled Nuclear Fusion, 9-11 May 1978, Santa Fe, NM, Vol. I, p. 844. Also available as Los Alamos Scientific Laboratory report LA-UR-78-1228 (1978).
- 7. T. J. SEED, "TRIDENT-CTR User's Manual," Los Alamos Scientific Laboratory report LA-7835-M (May 1979).
- 8. M. J. EMBRECHTS, "Is a Third-Order Spherical Harmonics Expansion of the Flux Adequate for a 2-D Sensitivity Analysis of Fusion Reactor Blankets?," Los Alamos National Laboratory report LA-UR-81-616 (1981).
- 9. D. L. PREZBINDOWSKI, "An Analysis of the Effects of Cross-Section Uncertainties on the Multitable S. Golution of Neutron Transport through Air," Doctoral Dissertation Purdue University (January 1968).

- 10. D. L. PREZBINDOWSKI and H. A. SANDMEIER, "The Effects of Cross-Section Inaccuracies on Integral Data," Transactions American Nuclear Society, 11, 193 (1968).
- D. E. BARTINE, F. R. MYNATT, and E. M. OBLOW, "SWANLAKE, A Computer Code Utilizing ANISN Radiation Transport Calculations for Cross-Section Sensitivity Analysis," Oak Ridge National Laboratory report ORNL-TM-3809 (1973).
- 12. D. E. BARTINE, R. G. ALSMILLER, Jr., E. M. OBLOW, and F. R. MYNATT, "Cross-Section Sensitivity of Breeding Ratio in a Fusion Reactor Blanket," Nuclear Science and Engineering, 53, 304 (1974).
- 13. S. A. W. GERSTL, "Blanket Design and Cross-Section Sensitivity Calculations Based on Perturbation Methods," Proceedings of the First Topical Meeting on the Technology of Controlled Nuclear Fusion, San Diego, CA, 16-18 April 1974. (CONF-740402-P2, p. 136).
- 14. S. A. W. GERSTL, "The Application of Perturbation Methods to Shield and Blanket Design Sensitivity Analysis," Argonne National Laboratory report AP/CTR/TM-28 (1974).
- 15. R. G. ALSMILLER, Jr., R. T. SANTORO, J. BARISH, and T. A. GABRIEL, "Comparison of the Cross-Section Sensitivity of the Tritium Breeding Ratio in Various Fusion-Reactor Blankets," Nuclear Science and Engineering, 57, 122 (1975).
- 16. S. A. W. GERSTL, D. J. DUDZIAK, and D. W. MUIR, "Application of Sensitivity Analysis to a Quantitative Assessment of Neutron Cross-Section Requirements for the TFTR: An Interim Report," Los Alamos Scientific Laboratory report LA-6118-MS (1975).
- 17. S. A. W. GERSTL, D. J. DUDZIAK, and D. W. MUIR, "Cross-Section Sensitivity and Uncertainty Analysis with Application to a Fusion Reactor," Nuclear Science and Engineering, 62, 137 (1977).
- 18. D. J. DUDZIAK, "Cross-Section Sensitivity and Uncertainty Analysis for Fusion Reactors (a Review)," Proceedings of the Advisory Group Meeting on Nuclear Data for Fusion Reactor Technology, IAEA, Vienna, Austria, 11-15 December 1978 (IAEA-TECDOC-223).
- Y. SEKI, R. T. SANTORO, E. M. OBLOW, and J. L. LUCIUS, "Macroscopic Cross-Section Sensitivity Study for Fusion Shielding Experiments," Oak Ridge National Laboratory report ORNL-5467 (1978).
- 20. Y. SEKI, R. T. SANTORO, E. M. OBLOW, and J. L. LUCIUS, "Comparison of One- and Two-Dimensional Cross-Section Sensitivity Calculations for a Fusion Reactor Shielding Experiment," Oak Ridge National Laboratory report ORNL/TM-6667 (1979).

- 21. T. WU and C. W. MAYNARD, "The Application of Uncertainty Analysis in Conceptual Fusion Reactor Design," Proc. RSIC Seminar on Theory and Applications of Sensitivity and Uncertainty Analysis, Oak Ridge, TN, 23-24 August 1978.
- 22. E. T. CHENG and R. W. CONN, "The Influence of Design Variations on Controlled Thermonuclear Reactor Blanket Neutronic Performance Using Variational Techniques," Nuclear Science and Engineering, 62, 601 (1977).
- 23. R. G. ALSMILLER, Jr., I. BARISH, and C. R. WEISBIN, "Uncertainties in Calculated Heating and Radiation Damage in the Toroidal Field Coil of a Tokamak Experimental Power Reactor Due to Neutron Cross Section Errors," Oak Ridge National Laboratory report ORNL/TM-5198 (1976).
- 24. G. C. POMRANING, "A Variational Principle for Linear Systems," J. Soc. Indust. Appl. Math., 13, 511 (1965).
- E. M. OBLOW, "General Sensitivity Theory for Radiation Transport," Oak Ridge National Laboratory report ORNL-TM-4110 (1973).
- R. CONN and W. M. STACEY, Jr., "Variational Methods for Controlled Thermonuclear Blanket Studies," Nuclear Fusion, <u>13</u>, 185 (1973).
- 27. D. E. BARTINE, E. M. OBLOW, and F. R. MYNATT, "Radiation-Transport Cross-Section Sensitivity Analysis. A General Approach Illustrated for a Thermonuclear Source in Air," Nuclear Science and Engineering, 55, 147 (1974).
- 28. E. M. OBLOW, "Sensitivity Theory from a Differential Viewpoint," Nuclear Science and Engineering, <u>59</u>, 187 (1976), and corrigendum, Nuclear Science and Engineering, <u>65</u>, 428 (1978).
- 29. W. M. STACEY, Jr., <u>Variational Methods in Nuclear Reactor Physics</u>, Academic Press, New York and London (1974).
- 30. F. G. PEREY, G. de SAUSSURE, and R. B. PEREZ, "Estimated Data Covariance Files of Evaluated Cross Sections. Examples for ²³⁵U and ²³⁸U," Advanced Reactors: Physics, Design and Economics, Proc. of Inter. Conf., 8-11 September 1974, Atlanta, GA, p. 578, Pergamon Press (1975).
- 31. F. G. PEREY, "The Data Covariance Files for ENDF/B-V," Oak Ridge National Laboratory report ORNL/TM-5938 (1977).
- 32. J. D. DRISCHLER and C. R. WEISBIN, "Compilation of Multigroup Cross-Section Covariance Matrices for Several Important Reactor Materials," Oak Ridge National Laboratory report ORNL-5318 (1977).

- 33. D. W. MUIR and R. J. LABAUVE, "COVFILS A 30-Group Covariance Library Based on ENDF/B-V," Los Alamos National Laboratory report LA-8733-MS (1981).
- 34. S. A. W. GERSTL and R. J. LABAUVE, "Experience with New Cross-Section Covariance Data in Fusion Neutronics Applications," Transactions American Nuclear Society, 33, 682 (1979).
- 35. S. A. W. GERSTL and W. M. STACEY, Jr., "A Class of Second-Order Approximate Formulations of Deep Penetration Radiation Transport Problems," Nuclear Science and Engineering, 51, 339 (1973).
- 36. S. A. W. GERSLT, "Second-Order Perturbation Theory and its Applications to Sensitivity Studies in Shield Design Calculations," Transactions American Nuclear Society, 16, 342 (1973).
- 37. E. L. SIMMONS, D. J. DUDZIAK, and S. A. W. GERSTL, "Reference Theta-Pinch Reactor (RTPR) Nucleonic Design Sensitivity Analysis by Perturbation Theory," Los Alamos Scientific Laboratory report LA-6272-MS (1976).
- 38. E. L. SIMMONS, D. J. DUDZIAK, and S. A. W. GERSTL, "Nucler Design Sensitivity Analysis for a Fusion Reactor," Nuclear Technology, 34, 317 (1977).
- 39. S. A. W. GERSTL, "A Minimum-Thickness Blanket/Shield with Optimum Tritium Breeding and Shielding Effectiveness," Proc. Third Topical Meeting on Technology of Controlled Nuclear Fusion, 9-11 May 1978, Santa Fe, NM, Vol. I, p. 269.
- 40. E. T. CHENG, "Application of Generalized Variational Principles to Controlled Thermonuclear Reactor Neutronics Analysis," Nuclear Science and Engineering, 74, 147 (1980).
- 41. E. T. CHENG, "Generalized Variational Principles for Controlled Thermonuclear Reactor Neutronics Analysis," General Atomic Company report GA-A15378 (1979).
- 42. R. W. CONN, "Higher Order Variational Principles and Padé Approximants for Linear Functionals," Nuclear Science and Engineering, 55, 468 (1974).
- 43. S. A. W. GERSTL, "Sensitivity Profiles for Secondary Energy and Angular Distributions," Proc. Fifth Int. Conf. Reactor Shielding, 18-23 April 1977, Knoxville, TN, Proceedings edited by R. W. ROUSSIN et al., Science Press, Princeton 1978.

- 44. S. A. W. GERSTL, "Uncertainty Analysis for Secondary Energy Distributions," Proc. Seminar-Workshop on Theory and Application of Sensitivity and Uncertainty Analysis, 22-24 August 1978, Oak Ridge, TN, Proceedings edited by C. R. WEISBIN et al., ORNL/RSIC-42, February 1979. See also D. W. MUIR, "Applied Nuclear Data Research and Development, April 1-June 30, 1977," Los Alamos Scientific Laboratory report LA-6971-PR, p. 30 (1977).
- 45. S. A. W. GERSTL, R. J. LABAUVE, and P. G. YOUNG, "A Comprehensive Neutron Cross-Section and Secondary Energy Distribution Uncertainty Analysis for a Fusion Reactor," Los Alamos Scientific Laboratory report LA-8333-MS (1980).
- 46. S. A. W. GERSTL, "SENSIT: A Cross-Section and Design Sensitivity and Uncertainty Analysis Code," Los Alamos Scientific Laboratory report LA-8498-MS (1980).
- 47. J. L. LUCIUS, C. R. WEISBIN, J. H. MARABLE, J. D. DRISCHLER, R. Q. WRIGHT, and J. E. WHITE, "A User's Manual for the FORSS Sensitivity and Uncertainty Analysis Code System," Oak Ridge National Laboratory report ORNL-5316 (1981).
- 48. C. R. WEISBIN, E. M. OBLOW, J. H. MARABLE, R. W. PEELLE, and J. L. LUCIUS, "Application of Sensitivity and Uncertainty Methodology to Fast Reactor Integral Experiment Analysis," Nuclear Science and Engineering, 66, 307 (1978).
- 49. J. H. MARABLE, C. R. WEISBIN, and G. de SAUSSURE, "Uncertainty in the Breeding Ratio of a Large Liquid Metal Fast Breeder Reactor: Theory and Results," Nuclear Science and Engineering, 75, 30 (1980).
- 50. A. DUBI and D. J. DUDZIAK, "High-Order Flux Perturbations," Nuclear Science and Engineering, 77, 153 (1981).
- 51. A. DUBI and D. J. DUDZIAK, "High-Order Terms in Sensitivity Analysis via a Differential Approach," Los Alamos Scientific Laboratory report LA-UR-79-1903 (1979).
- 52. J. C. ESTIOT, G. PALMIOTTI, and M. SALVATORES, "SAMPO: Un Système de Code pour les Analyses de Sensibilité et de Perturbation a Différents Ordres d'Approximation," to be published. Private communication with R. ROUSSIN.
- 53. T. J. SEED, W. F. MILLER, Jr., and F. W. BRINKLEY, Jr., "TRIDENT: A Two-Dimensional Triangular Mesh Discrete Ordinates Explicit Neutron Transport Code," Los Alamos Scientific Laboratory report LA-6735-M (1977).

- 54. Y. SEKI, R. T. SANTORO, E. M. OBLOW, and J. L. LUCIUS, "Comparison of One- and Two-Dimensional Cross-Section Sensitivity Calculations for a Fusion Reactor Shielding Experiment," Nuclear Science and Engineering, 73, 87 (1980).
- 55. A. GANDINI, "Method of Correlation of Burnup Measurements for Physics Prediction of Fast Power-Reactor Life," Nuclear Science and Engineering, 38, 1 (1969).
- 56. A. GANDINI, "Implicit and Explicit Higher Order Perturbation Methods for Nuclear Reactor Analysis, Nuclear Science and Engineering, 67, 347 (1978).
- 57. A. GANDINI, "High-Order Time-Dependent Generalized Perturbation Theory," Nuclear Science and Engineering, 67, 347 (1978).
- 58. A. GANDINI, "Comments on Higher Order Perturbation Theory," Nuclear Science and Engineering, 73, 293 (1980).
- 59. D. G. CACUCI, C. F. WEBER, E. M. OBLOW, and H. MARABLE, "Sensitivity Theory for General Systems of Nonlinear Equations," Nuclear Science and Engineering, 75, 88 (1980).
- 60. A. GANDINI, "Generalized Perturbation Theory for Nonlinear Systems from the Importance Conservation Principle," Nuclear Science and Engineering, 77, 316 (1981).
- 61. E. GREENSPAN, D. GILAI, and E. M. OBLOW, "Generalized Perturbation Theory for Source Driven Systems," Nuclear Science and Engineering, 68, 1 (1978).
- 62. G. I. BELL and S. GLASSTONE, Nuclear Reactor Theory, p. 608, Van Nostrand Reinhold Company (1970).
- 63. S. GERSTL, private communication.
- 64. R. E. MacFARLANE, R. J. BARRET, D. W. MUIR, and R. M. BOICOURT, "The NJOY Nuclear Data Processing System: User's Manual," Los Alamos Scientific Laboratory report LA-7584-M (1978).
- 65. R. E. MacFARLANE and R. M. BOICOURT, "NJOY: A Neutron and Photon Cross-Section Processing System," Transactions American Nuclear Society, 22I, 720 (1975).
- 66. C. I. BAXMAN and P. G. YOUNG (Eds.), "Applied Nuclear Data Research and Development, April 1-June 30, 1977," Los Alamos Scientific Laboratory report LA-6971-PR (1977).

- 67. W. C. HAMILTON, Statistics in Physical Science, p. 31, Ronald Press, New York (1964).
- 68. B. G. CARLSON, "Tables of Symmetric Equal Weight Quadrature EQ Over the Unit Sphere," Los Alamos Scientific Laboratory report LA-4734 (1971).
- 69. L. C. JUST, H. HENRYSON II, A. S. KENNEDY, S. D. SPARCK, B. J. TOPPEL, and P. M. WALKER, "The System Aspects and Interface Data Sets of the Argonne Reactor Computation (ARC) System," Argonne National Laboratory report ANL-7711 (1971).
- 70. T. J. SEED, private communication (June 1981).
- 71. M. J. EMBRECHTS, "SENSIT-2D: A Two-Dimensional Cross-Section and Design Sensitivity and Uncertainty Analysis Code," Los Alamos National Laboratory report to be published.
- 72. R. E. MacFARLANE and R. J. BARRETT, "TRANSX," Los Alamos Scientific Laboratory memorandum T-2-L-2923 to Distribution, August 24, 1978.
- 73. F. W. BRINKLEY, "MIXIT," Los Alamos Scientific Laboratory internal memo (1980).
- 74. R. D. O'DELL, F. W. BRINKELY, Jr., and D. R. MARR, "User's Manual for ONEDANT: A Code Package for One-Dimensional, Diffusion-Accelerated, Neutral-Particle Transport," Los Alamos Scientific Laboratory internal report (October 1980).
- 75. T. R. HILL, "ONETRAN: A Discrete Ordinates Finite Element Code for the Solution of the One-Dimensional Multigroup Transport Equation," Los Alamos Scientific Laboratory report LA-5990-MS (1975).
- D. J. DUDZIAK, "Transport and Reactor Theory, July 1-September 30, 1981, Progress Report," Los Alamos National Laboratory report, to be published.
 S. A. W. GERSTL, private communication.
- 77. T. WU and C. W. MAYNARD, "Sensitivity and Uncertainty Analysis for a Fusion-Fission Hybrid Systems: SOLASE-H," University of Wisconsin report UWFDM-401 (1981).
- 78. T. WU and C. W. MAYNARD, "Higher-Order Sensitivity Theory and Non-linear Optimization in Fusion Neutronics Studies," University of Wisconsin report UWFDM-402 (1981).

- 79. T. E. ALBERT, "Introduction of the Green's Function in Cross-Section Sensitivity Analysis, Trans. Am. Nucl. Soc. 17, 547 (1973).
- 80. H. GOLDSTEIN, "A Survey of Cross-Section Sensitivity Analysis as Applied to Radiation Shielding," 5th Int. Conf. on Reactor Shielding, Science Press (1977).
- 81. D. W. McCOY, Private communication. See also "Transport and Reactor Theory, July 1-September 30, 1981," Los Alamos National Laboratory report, to be published.
- 82. B. A. ENGHOLM, The General Atomic Co., Letter to W. T. Urban, 12 January 1981.
- 83. W. T. URBAN, Los Alamos National Laboratory, Letter to B. A. Engholm, 17 February 1981.
- 84. W. T. URBAN, Los Alamos National Laboratory report to be published, 1981.
- 85. W. T. URBAN, T. J. SEED, D. J. DUDZIAK, "Nucleonics Analysis of the ETF Neutral-Beam-Injector Duct and Vacuum-Pumping-Duct Shields," Los Alamos National Laboratory report LA-8830-MS, 1981.

APPENDIX A

SENSIT-2D SOURCE CODE LISTING

In this appendix a source listing of the SENSIT-2D code is reproduced. The source listing is documented by many comments.

A source listing of the SENSIT-2D code can also be obtained from the NMFECC by typing the command

FILEM\$READ 5043 .SENS2D SSSS\$END

```
Los Alamos Identification No. LP-1390.
          FROGRAM SENSÉD (ISINITAFEDESSINISENSOUTITAFEÉESENSOUT)
                     TAPE10: TAPE1: TAPE2: TAPE4: TAPE7: TAPE8: TAPE3)
 3 c
 4 C THIS IS THE MAIN PART OF THE PROGRAM (SENSIT-20)+ NOV. 1 VERSION
 5 c
          LEVEL 2.LC
          CDMMDH #C (22000)
 8
          COMMON /PLOT/ TITLE (8)
10
          COMMON/ITE/ITEST: ITYP
          COMMON/COVARI/JCOVAR
11
          COMMON/SEDRM/KXSI INTI INA
          COMMON/URS/LMAXP
13
          COMMON /LLC/ LC (40000)
14
15
         INTEGER GIGP
17
          CALL ECZEMO(LC)
18
19 C +++ START READING CONTROL PARAMETERS
20 READ(5:1010) (TITLE(1):1=1:6)
    1010 FORMAT (8A10)
          HRITE(6:1020) (TITLE(1):1=1:6)
22
23 1020 FDRHAT (1H1+8A10)
          READ (5,1030) ITYP: MAXHAD: MNPB: MNEL: IPREP: JT: JTMAX:
24
                         IGHINCOUPLILHAXIITESTIJZHAX
   1030 FDRHAT (12:6)
27
          READ (5:1030) INSTAPE: NPERNS: IDES: KDZ: KPZ: KXS: INT: IHA:
         1
          1 DETCOMINSEDITOUTPUTINSUMCOM
READ(5:1030) ICHIHOM: IOPT: ISTOP: IGED: IAP3
28
29
          MRITE (6:1040) ITYP: MAXHADIMHPD: MNEL: IPREPIJT: JTMAXI
30
                          IGHINCOUPLILMAXIITESTIJZMAX
32 c
    1040 FORMAT (IH + FITTE
                                  = TYPE DF SENS. -UNCERT. -ANAL. (0-xs:1-Design+)
33
34
                  +,2-vectna-xs,3-sep+, 16x,1H=,14,7
35
                 * MAXHED * MAXIMUM NUMBER OF HORDS ON A FILE X 1000+: 35x:1H=:24:/
36
                 + MAPE = MAX. NUMBER FLUXES/BURDRANT+:48x:1H=:24:/
+ MAEL = MAY. NUMBER DF ETA LEVELS+:50x:1H=:14:/
37
         Ð
38
         Æ
                 + IPREP = PREPARED FLUXTAPES RESULTED? 0/1 NO/YES +:35x+
1HR:14+/
+ JY = NUMBER DF BANDS+:60x:1HR:14+/
40
         6
                 TE +
41
                            # MAXIMUM NUMBER OF TRIANGLES IN ++
42
         L
                  PANY DHE BAND+132x11H=1141/
43
         H
                 * 16H * TOTAL NUMBER OF ENERGY GROUPS***46**1M**14*/
* NCDUPL * NUMBER OF NEUTRON GROUPS IN CPL. CALC.* ZERO**
45
         D
                  + FOR NEUTRONS DNLY+: 13x+1HE+14+/
46
47
                 • LMAX # MAX. P-L DRDER DF CROSS SECTIONS+:43x:1M=:14:/
• ITEST # TEST PRINTOUT FLAG: 0-NONE:1-xs:2-NONE+:
         Ð
48
49
                  4,3-VECTOR-X$4,25x,1H=,14,/
50
                  + JZMAX
                            - HAX - OF ZONES IN MNY ONE BAND+145x11H=1141/)
51 c
52
          MRITE (6:1050) IXSTAPE: MPERXS: IDES: KDZ: KPZ: KXS: IHT: IHA:
53
                           DETCOVINSEDI IDUTPUTINSUNCOV
    1050 FORMAT(1M :*IXTAPE = SQURCE OF INPUT CROSS-SECTIONS: 0-CARDS:*:
A +1-TAPE4:2-TAPE104:15x:1M=:14:7
55
56
                  * NPERXS ,= NUMBER OF SUCCESSIVE CASES! ALSO NO. OF INPUT+:
58
                  * XS-SETS TO BE READ+11x+1H=+14+/
59
                 • IDES
                             - ASSUMED 1 PER CENT DENSITY INCREASE IN PERT. ..
60
         8
                 + ZS. FOR DES.-SEN. : U/1=ND/YES+:01x:1H=:14/
                         # NUMBER DE DETECTOR ZONES+151x1M=+14+/
# NUMBER DE PERTURBED ZONES+150x1M=+14+/
                 • KDZ
61
         •
62
                  * KPZ
         6
                              = IMPUT XS-FORMAT: 0-1F 1TYP=2: 1-LASL:2-DRNL+:
64
65
66
         1
                 32x,1H=,14,/
                              = POSITION OF TOTAL CROSS SECTION IN XS-TABLES*:
         3
                  · IHT
                  31x11H=114+/
67
68
                  . IHA
                              - POSITION OF ASSUMPTION CHOSS-SECTION IN X5-0:
                  +TABLES+, 26x, 14=, 14,
         #
69
70
71
72
73
74
75
         N
                  . DETCOV
                             = 0/1 = DO NOT/DO READ COVARIANCE MATRIX FOR+;
                  + m(6)+,28×,1
         0
                                0/1 = DO NOT/DO READ INTEGRAL SEDEUNCERTAINS
                  . NSED
                  +TIES +127x11H=1141/
         .
                  ◆ IDUTPUT = DUTPUT PRINT DETRIL! 0-SUM DVER PERT. ZDMES+:

◆ DMLY: 1- ALSD INDIV. PERT. ZS.+:01x:1H=:14:/
         .
         $
                                ND. OF RESP. - VARIANCES SUMMED FOR STYP=2++;
76.
77
                  * ZERO FOR ITYPEU:1:30:14x:1W=:14:/)
78
           HRITE (6:1055) ICHIMOH: IDPT, ISTOP: ISED: IMP3
     1055 FORMAT(IN **ICHIMOM * CHI'S GENERATED FROM FLUX MOMENTS**
```

```
81
                     + NO/YES G/GE1 ++28x+1H=+14+/
                                 = 0/1/2/3:PRINT NO/SN-SETS/PSI'S/PSI'S+SN-SETS+:
 82
                     ♦ IDPT
 83
                     31x+1H=+14+/
 64
85
                     ♦ ISTOP = STOP AFTER PSI'S AND CHI'S ARE CALCULATED? ♦;
♦0/1 NO/YES+,22×;1H=;14,/
           Ð
           Œ
                     ◆ IGED = 0/1 R-Z/X-Y GEDMETRY+.55x,1M=.14,/

◆ IGP3 = 0/1 USE EXISTING SEB. ANG. FLUX FILE? ND/YES+,
 86
                     + IAF3
 87
 88
                    29x+1H=+14+/>
 89 c
 90 C SET POINTERS FOR SUBROUTINE EBND
 91 c
 92
            LE=1
 93
            TDELU=LE+16H+2
 94 c
 95
            CALL EDND (AC (LDELU) FAC (LE) FIGH FACOUPL)
 96 c
 97 c
 98 C SET POINTERS FOR SUBROUTINE GEOM
 99 c
100
            LITZ = LDELU + ISH
101
            LIIT = LITZ + JT
102
            LNTPZ = LIIT + JT
            LNF2 = LNTPZ + JT*JZMAX

LND2 = LNPZ + KPZ

LID2 = LND2 + KDZ

LNFIDZ = LIDZ + JT*JZMAX

LNDIDZ = LNPIDZ + JT*JZMAX
103
104
105
106
107
            LIPEL2 = LNDIDZ + JT+JZMAX
LIDEL2 = LIPEL2 + KPZ
108
109
            LPT = LIDELE + KDZ
110
111
            LDT = LPT + JT+KPZ
            LKELDI = LKELPE + JTOKPZ

LKELPI = LKTP + JTOKPZ

LKELPI = LKTP + JTOKPZ

LKELDI = LKELPI + JTOKPZ
112
113
114
115
116
            LKELD2 = LKELD1 + JT+KDZ
118
             LCOVA = LKELDE + ST+KDZ
119
            LAST = LCDVR + IGH+IGH
121
            CALL SEDM (AC (LITZ) +AC (LITZ) +AC (LNTPZ) +AC (LNPZ) +AC (LNDZ) +AC (LIDZ) +
122
                         AC(LNPIDZ)+AC(LNDIDZ)+AC(LIPELŽ)+AC(LIDELŽ)+AC(LPT)+
123
                           ACILDT) FAC (LHTP) FAC (LHTD/FAC (LHELP)) FAC (LKELPE) F
124
                           AC (LHELD1) +AC (LKELDZ) +JT+KPZ+KDZ+ ITSUH)
125 c
126 C CALCULATE AUXILARY VARIABLES 127 C
128
            KPZP = KPZ+1
            LMAYP = LMAY + 1
16MP = 16M + 1
129
130
131
            HAD = 0
132
            DD 110 I=1+LMAXP
133
             NH = NH + I
134
       110 CONTINUE
135 c
136 C SET PDINTERS FOR SUBPOUTINE SHOOM AND SUBROUTINE TAPAS 137 C
138 c
139
            МАКИМБЕНАЧИМБФ1 000
140
141
142
            LKTAPELAST
143
            LHT = LHTAP + 16H+5 + 1
144
            LMME LMT + ISH
            LISN = LMM + 16M
LNPB = LISN + 16M
LNUP = LNPB + 4
145
146
147
148
            LAST = LNUP + MMEL+4
149
150
151
            ICE = 1
ICM = ICE + 4+MMP#+IGM
152
            ILAST = ICH + 4+HNPF+ISH
153
154
155
            CALL SHOOM (LC (ICE) :LC (ICH) :AC (LHT) :AC (LHUP) :AC (LHPB) :
                          AC (LMM) | MNPP | MNEL | AC (LISM/ | 16H | 10PT)
156
157
             CALL TAPAS (AC (LKTAP) +AC (LHH) +NH+ ITSUH+ ISH+ HAXHAD+
158
                         AC (LKTP) + AC (LKELP1) + AC (LKELP2) + KPZ+JT)
159 c
160 C SET POINTERS FOR SUBROUTINES PAGEN AND FLUXHON
```

```
161 c
            LP = LNPP
162
            LP = LNPB

LR = LP + MNPD+LMA>P+LMAXP

LPHMI = LR + 4+MNPB+MM

LT = LPHMI + MNPD

LAST = LT + 2+LMAX + 1
163
164
165
166
167
168
            IFFLUX = ILAST
            IFLUX = IFFLUX + JTHAY-HHNPB
IFUX = IFLUX + JTHAY-HHNPB
IFHDH = IFUX + HHPJTHJTHAX
169
170
            ILAST=IFHOH+JT+JTHAX
172
173
174
            IF (IPMEP.EB.1) 60 TO 140
            DD 130 1=1.2
176
            IF(1.ED.2) KAD=1
177
            DO 120 GP=1:16M
178
179
            ---
180
            CALL PAGENTAG (LP) +AC (LR) +LC (ICH) +LC (ICE) +AC (LPHHI) +AC (LT)+
181
                         AC (LHH) | LHA; | MNPD | NH | LHAXP | G | KAD | AC (LISH) )
162
183
            CALL FLUXHOH (AC (LIIT)+LC (IFFLUX)+LC (IFLUX)+LC (IFUX)+AC (LHT)+
                            AC LENHITAC (LRITAC (LKTAP) TO I IGNIKPZINNIJTI
184
                             KRITIMA, MRD, HAD, AC (LKTP) +AC (LHELP1) +AC (LKELP2) +
185
                             AC (LKTD) +AC (LKELD1) +AC (LKELD2) +LC (IFMOH) +HDZ+ IAF3)
187
       120 CONTINUE
188
       130 CONTINUE
189
      140 CONTINUE
190
191 C
192 C SET POINTERS FOR SOUBROUTINE DETSEN
193 c
            LESUMP = LMPB
195
            LPHIV = LFSUMP + ISH
           LR = LPHIV + JTMAX
LZDN = LP + KDZ+16M
LSENP = LZDN + KDZ
LSSENP = LSENP + 16M
196
197
198
199
200
            LSIGHA = LSSENR + IGH+KDZ
201
           LAST = LSIGHA + KDZ+IGH
202
203
            CALL DETSEN (AC (LHELDI) +AC (LHELDZ) +AC (LHTD) +KDZ+JT+AC (LIIT) +
                        15H: IDUTPUT: DETCDU: PP: AC (LCDUP: IAC (LFSUMP): AC (LPHIV):
204
205
                         AC (LR) FAC (LZDN) FAC (LSENR) FAC (LSSENR) FAC (LSIGNA)
206
                         AC (LDELU) FAC (LE) FNCDUPL F16ED)
207 c
208 C SET PDINTERS FOR CHI'S AND PSI'S
209 c
210
            LIPSI = LMPD
           LCHI = LIPSI + IGH+KPZP
LCCHI = LCHI + KPZP+ISM
LASTI = LCCHI + ISH
211
212
213
214
215
            IF (ICHIMOH.EB.1) GD TD 145
216 C SET POINTERS FOR SUBROUTINE CHIS
217
218
            IFLUX = 1
            IAFFLUX FIFLUX + MMFD+JTMAX
IAFLUX = IAFFLUX +MMPD+JTMAX
219
220
            ILAST # IAFLUX + MNPP+JTMAX
221
223 C CALCULATE THE CHI'S
224
225
            CALL CHIS (LC (IFLUX) +LC (IMPFLUX) +LC (IMPLUX) +AC (LMTMP) +AC (LCHI) +
                          AC (LKELP1) +AC (LKELPE) +AC (LKTP) +AC (L1117) +AC (LHM) +
227
                          AC (LISN/+AC (LMT)+KPI+JT+JTHAX+IGH+IDUTPUT+ITSUH+IGED)
228 c
229 C SET POINTERS FOR SUBMOUTINE POINT43
230 c
      145 LIAME = LEST1
231
           LILP = LIMBR + JTOPPZ
LPS1 = LILP + JTOKPZ
232
233
            LPPSI=LPSI + LMAXPOISHONPZP
234
235
            LAST = LPPSI + LMAXP+IGH
236
237 C SET POINTERS FOR SUPROUTINE PSIS
236
           CALL POINT45 (IGH+AC (LIPSI) + ISUH+LHAXP+ ILPNT+KPZP)
239
            IFFLUX = ISUH + 1
```

```
IFAFLUX = IFFLUX + ITSUM*NM
ILAST = IFAFLUX + ITSUM*NM
241
242
243
244 C CALCULATE THE PSI'S AND STORE IN LCM
245 CALL PSIS (AC (LMTP) + AC (LIIT) + AC (LHELPI) + AC (LHELPI) + AC (LIFFLUX) + LC (IFFLUX) + LC (IFAFLUX) +
246
                       ACILIPSI) (LC (IFFLUX) (LC (IFAFLUX) )
                        AC (LPSI) IAC (LPPSI) INMIJTI PPZI PPZPI IGMILMAXPI
247
                        AC (LKTAP) +AC (LCHI) + 10FT+1PPEP+1CHIMOH+16E0)
248
249
250
          IF(ISTOP.ER.1) STOP
252 C CLEAR APPROPRIATE SCH AND LCH SPACE
           IHELP1=ISUM+1
253
254
           HELPETILAST
255
           DD 155 THELP=THELP1+THELP2
      155 LC(1HELP)=0.0
£56
257
258
           INFLPI=LOSTI
           IMELP2=LAST
DD 157 IMELP=IMELP1:IMELP2
259
      157 AC(IHELP)=0.0
260
261
           CALL SUBROUTINES TO READ IN AND/OR CALCULATE VALUES OF CROSS
262 C
263 C
           SECTIONS
264
           NXS = 0
265 C +++ DEPENDING ON THE TYPE OF CROSS SECTION OF EPPOPFILE AVAILABLE:
266 C *** THE CODE BRANCHES HERE INTO THO DIFFERENT EXECUTION MODES
           IF (ITYP.ED.2) 60 TD 290
267
268 c
269 C +++ IF A SED UNCEPTAINTY ANALYSIS IS MANTED THEN I MUST PEAD IN THE
270 C +++ APPRAYS SHED AND FSED FOR ALL NEUTRON GROUPS
271
      150 CONTINUE
           IF (MSED.ER.D) 6D TO 17D IF (MCDUPL.EB.D) IGH1=IGH IF (MCDUPL.NE.D) IGH1=MCDUPL
272
273
274
275 C SET POINTERS FOR GHED AND FSED
          LGMED = LAST1
LFSED = LGMED + IGM1
LAST1 = LFSED + IGM1
276
277
278
280
           PEAD (5:1060) (AC (LGHED-1+1):1=1:16H1)
281 1060 FDRHAT (1216)
           MEAD (5:1070) (AC(LFSED-1+1):1=1:16H1)
282
283 1070 FORMAT (6E12.5)
           HPITE (6+1080)
284
     285
286
287
288
          DD 160 1=1:16H1
289
           HPITE (6:1090) 1:AC (LGHED-1+1) +AC (LFSED-1+1)
290 1090 FORMAT(IM 12x113,4x113,6x11PE1U.3)
291
      160 CONTINUE
292 C +++ END OF SED-UNCERTAINTY INPUT AND PRINT
293 c
294
      170 CONTINUE
295 C CALCULATE AUXILARY VARIABLES
296
         ITL = ISH + IHT
297
           NHJ = ITL+16H+LHAXP
           NHL = IGH+IGH+LMAXP
298
303 C SET LCH-POINTERS FOR CROSS SECTIONS
           IXS = IDSL + NHK
IXS1 = IXS
IF(KXS.EB.2) IXS1 = IXS + NHJ
304
305
306
307
            ILAST = IXSI + NHJ
           Nxs1 = Nxs + 1
308
           HRITE (6:1100) NYS1:NPERKS
309
310 1100 FORMAT(IM :+ CASE NUMBER +:13:+ DF NPERXS =+:13:+ SUCCESSIVE+:
311 1 + CASES+)
311
           CALL SUSS (LC (IXS) + IGH+ ITL+ NHL+ LMAX+ IXSTAPE + TITLE+ LC (IXS1))
312
313 C SET POINTERS FOR SECOND CROSS SECTION SET 314 1xspan = 1xs
           IF(ITYP.NE.1) 60 TO 180 IF(IDES.EB.1) 60 TO 180
315
316
           INS * EXE * HUJ
EXE * EXE
316
           IF (HXS.EP.2) IXS1 = IXSBAR + NUJ
ILAST = IXS1 + NUJ
319
```

```
321
            HPITE (6+1110) NYS1
    322
      1
323
            CALL SUB5 (LC (IXSBAR) : IGH: ITL: NHL: LMAX: IXSTAPE: TITLE:
324
      LCLIXSIDO
1 LCLIXSIDO
180 CONTINUE
SER FO
325
326
327 C SET SCH-POINTERS FOR DST-AXS-FISXS-SXS-SXSHS
           LDST = LAST1
LASS = LDST + IGH
LFISKS = LASS + IGH
LSKS = LFISKS + IGH
358
329
330
331
332
           LEXENG = LEXE + 16M
           LAST = LSXSNG + 16M
334 C CALL SUBROUTINE TO CALCULATE PERTURBATION OF CHOSS SECTIONS
           CALL SUBS (AC (LDST) +LC (IDSL) +LC (IXS)+LC (IXSDAR/+
335
                     IGM: ITL: AC (LAXS) : AC (LSXS) : LC (IDSLFD) : AC (LSXSNG) :
336
                       HCDUPLINC (LFISKS) | IDES)
337
338 C *** IN OPDER TO EDIT SED PROFILES AND COMPUTE SED UNCERTAINTIES
339 C *** HE NEED ADDITIONAL APPRYS AS FOLLOWS
            IF (NCDUPL.ED. 0/16M1=16M
340
341
            IF (NCDUPL.NE. 0) IGHI-NCOUPL
342
            NHSED = 16H1+16H1
           IPSED = IDSL + NHK
ILAST = IPSED + NHSED
343
344
           LF E LSXS + 16H
LFFD E LF + 16H
LSEN E LFFD + 16H
345
346
347
           LSENT = LSEN + 16H
LFFDNG = LSENT + 16H
LPSGP = LFFDNG + 16H
348
349
350
351
           LPSG = LPSGP + 16H1
            LSSED = LPS6 + IGH!
352
           LSHOT = LSSED + IGH1
LSCOLD = LSHOT + IGH1
353
354
           LDRSED = LSCOLD + 16H1
356
           LAST = LDRSED + 16H1
357 c
358 C \diamond \diamond \diamond to print sensitivity profiles per zone me identify a zone-paramete 359 C \diamond \diamond \diamond and loop through all dutput routines
360 C
361
     31=1
190 ⊬=Ú
362
363
     60 TD 210
365
       J1=1
366
367
           MRITE (6:1120)
    1120 FORMAT (1H )
368
36.9
     210 CONTINUE
370
           IF (NYS. NE. 0) 60 TO 220
371
           IF ((J1.NE.1).DR. (W.ST.0)) 60 TD 220
372 C +++ FOR XS-SENSITIVITY CALCULATIONS PRINT A LIST OF DEFINITIONS
373 C FOR PARTIAL AND NET SENSITIVITY PROFILES AS EDITED IN SUBB
374
375 c
376 C *** FOR DESIGN-SENSITIVITY CALCULATIONS PRINT ANDTHER LIST OF
377 C DEFINITIONS OF EDITS FROM SUBB
378
379
            IF (ITYP.ED. U.DR. ITYP.ED. 3) CALL TEXT
IF (ITYP.)
381 220 CONTINUE
382 C
            IF (ITYP.EB.1) CALL TEXTA
383
            IF (J1.NE.1) 60 TD 230
364
            IF (NCDUPL.EB. 0) ISHI=ISH
385
            IF (NCDUPL.NE. 0) IGHI=HCDUPL
386
      230 CONTINUE
387
            CALL PRINTS(AC(LIPSI):K:IPPSI:KPZP:IGM:AC(LCNI):AC(LCCNI))
388
389
           CALL SUBB (AC (LF) +LC (IDSL) +LC (IPPSI) +AC (LDST) +AC (LCCHI) +DELI+
                       DELIFDIPHILMAPPIGHIAC (LAKS) IAC (LSEN) IAC (LSES)
390
391
          2
                        AC (LE) FAC (LDELU) FLC (IDSLFD) FAC (LFFD) FAC (LFISXS) F
                        AC (LSENT) #31+NCDUPL#16M1+AC (LFFDNG) #N+ IDES
392
393
394
            # (ITYP.NE.3) 60 TO 240
395 C *** FOR SED SENSITIVITY AND UNCERTAINTY ANALYSIS HE EDIT FROM SUB11: 396 C *** BUT DNLY FOR THE SUM DIER ALL PERTURBED ZONES:
397 C +++ AND DNLY FOR NEUTRON GROUPS .
398
399
            # ((J1.NE.1).DR.(K.ST.D)) &D TD 240
400
```

```
401
            CALL SUB11 (LMAPPIJ1: IGH1: IGH: PR: NSED: LC (IPSED) : AC (LPSEP):
                         AC (LPSG) +AC (LSSED) +AC (LSHOT) +AC (LSCOLD) +AC (LDRSED) +
402
 403
                        LC (IDSL/)LC (IPPSI) +AC (LDELU/+AC (LGHED/+AC (LFSED/)
 404
405 C +++ END SED ANALYSIS
406 C
       240 IF (NCDUPL.ED. 0) 60 TO 250
407
408
            1F (J1.NE.1) 60 TD 250
409
            IGH1=IGH
410
            JI=MCDUPL+1
411
            6D TO 220
       250 CONTINUE
412
            1F (10UTPUT.EP. 0) 60 TO 260
414
            IF (H.ED.KPZ) 60 TO 260
415
       GD TD 200
260 IF (JCDVAR.ED. 0) GD TD 270
416
417
           LENCOVEIGH+IGH
418 C SET POINTERS FOR COVARIANCE MATRIX
           ICOUR = ILAST
ILAST = ICOUR + LENCOU
419
420
421
           LESUM = LAST
422
           LAST # LFSUM + 16M
423
           CALL SUBSILE (ICDVR) + AC (LSEN) + AC (LFSUM) + I6M+LE (LDELU))
       270 N=S = NXS + 1
4:4
425
            IF (NXS.LT.NPERXS) SD TO 150
426
427
428
      280 STDP
429
430 c
431
       290 CONTINUE
432 c
433 C +++ THIS SECTION PERFORMS A COMPLETE SENSITIVITY AND UNCERTAINTY ANA-
434 C +++ LISIS OF THE LECTOR CROSS SECTIONS
435 C *** THE CODE THEN REPUIRES A COVARIANCE FILE TO BE GIVEN IN LASL EMBE:
436 C *** FORMAT WHICH CONTAINS PAIRS OF VECTOR CROSS SECTIONS WITH THEIR
437 C +++ RESPECTIVE COLARIANCE MATRIX.
438 C
439
           NCDV = NPERXS
440
           HPITE (6:1130) NCDV
441
     1130 FORMAT (1H +/PA VECTOR CROSS-SECTION UNCERTAINTY AMALYSIS WILL++
          1
442
                + 3E+1
443
                  + PERFORMED+1/+FOR A TOTAL OF NPERXS = +113:
444
                  PAIRS OF VECTOR >S WITH COVARIANCES FROM TAPE 10 4/)
           IF(NCDUPL.EB.0) IGH1=IGH
IF(NCDUPL.NE.0) IGH1=NCDUPL
445
446
447
           NHCOV = 16H1+16H1
448 C SET POINTERS FOR VECTOR CROSS SECTION UNCERTAINTY ANALYSIS
449
          LUXSI = LAST
LUXSE = LUXSI + IGHI
450
451
           L#1 = LVXSC + 16M1
           LP2 = LP1 + IGH1
LD# = LP2 + IGH1
452
453
454
           LAST - LDR + NCDV
455
           ICOV = ILAST
456 ILAST # ICDV + NHCDV
457 C +++ START A LDDP HERE DVER ALL XS-PAIRS
459 C PUT CHI'S IN APPROPRIATE SPACE IN SCH
460 C
461
           CALL PDINTS (AC (LIPSI) + MPZP+ IPPSI+ MPZP+ ISH+ AC (LCHI) + AC (LCCHI))
462 c
463 c
464
      300 NXS # NXS + 1
465
           CALL SUBSU (AC (LUXS1)+AC (LUXS2)+LC (1CDV)+16H1+10+DEN1+DEN2)
466 C 444 THIS BOUTINE BEADS PAIRS OF VECTOR SS AND THEIR COURRIANCE MATRIX
467 C 444 FROM TAPEIO
468
469
           CALL SUBBY (AC (LVXS1)+AC (LVXS2)+LC (ICDV)+AC (LCCHI)+AC (LDELU)+
470
                        AC (LP1) +AC (LP2) +AC (LDR) +AC (LE) +16H+16H1+HPZ+
471
472 c
                        ## : ID : NYS : DEN1 : DENC)
473 C 444 THIS MOUTINE COMPUTES AND EDITS SENSITIVITY PROFILES P1 AND PÉ
474 C +++ AND FOLDS THEN MITH THE COVARIANCE MATRIX DRIN
475 C +++ FOR THIS PARTICULAR PAIR OF VECTOR XS AND THEIR CORELATED ERRORS
476 c
           IF (NYS.LT.NCDV) ED TD 300
478 c
           CALL SUBSICIAC (LDR) +NCDV+NSUMCDV)
480 C *** THIS POUTINE COMPUTES THE TOTAL VARIANCE DUE TO THE SUM OF ALL
```

```
461 C +++ CROSS-SECTION ERRORS: AND PERFORMS PARTIAL SUMS IF NSUMCOV.NE. (
482 C
483
484
           END
485 c
486 c
487
    c
488 C
489 C EBND READS IN NEUTRON AND GAMMA BAY STRUCTURE AND CALCULATES LETMARGY
490 C
             HIDTHS PER GROUP
491 c
492 c
493
           SUBROUTINE EBND (DELUTETIONTNOOUPL)
494 C
495 C + + + INPUT COMMENTS + + +
496 C
497
               E(3)
                         - ENERGY BOUNDARIES FOR NEUTRON AND/OR GAMMA GROUPS
    c
498 C
499 C + + + DUTPUT COMMENTS + + +
500 c
               DELU(J) - LETHARGY HIDTHS
501 C
502
           INTEGER 6
503
           DIMENSION DELUCTORE (1)
504 C READ IN NEUTRON AND GAMMA GROUP BOUNDAMIES AND EDIT

505 IF (NCOUPL.ER.O) IGHP1 = IGH + 1

506 IF (NCOUPL.NE.O) IGHP1 = NCOUPL+1

507 READ (5:430) (E(I):I=1:IGHP1)

508 HRITE (6:420) IGHP1
509
           HPITE (6:410) (E(2):1=1:16HP1)
510
            IF (NCDUPL.ES. 0) 60 TO 110
           16MP2 = 16M + 2
NCP2 = NCDUPL + 2
NGMP1 = 16M - NCDUPL + 1
511
512
513
           READ (5:430) (E(1):1=NCP2:18HP2)
515
           HRITE (6:440) NGMHP1
516
           HRITE (6:450) (E(1):1=NCP2:16HP2)
517
     110 CONTINUE
518 C CALCULATE LETHARGY INTERVALS FOR BOTH NEUTRON AND GAMHA GROUPS
           IF (NCDUPL.ER. 0) NNEUT=ISH
IF (NCDUPL.NE. 0) NNEUT=NCDUPL
519
520
           DD 120 6=1+NNEUT
EDUDZ= E(6)/E(6+1)
521
522
523
           DELU(6) = ALDG(EBUDZ)
524
     120 CONTINUE
525
           IF (NCDUPL.EB. 0) 60 TO 150
526
           DD 130 6=16HP1+16H
527
           EPUDZ=E (6+1)/E (6+2)
528
           DELU(6) FALDS (EBUDZ)
529
      130 CONTINUE
530
           HRITE (6:460)
531
           DD 140 6=1:16M
           HRITE (6:470) SIDELU(6)
532
533
      140 CONTINUE
534
      150 CONTINUE
       410 FORMAT (1m +10(1x+1PE18.3))
536
      420 FORMAT (1M :14:4 NEUTRON ENERGY GROUP EDUNDARIES BEAD: IN EU4: 430 FORMAT (6612.5)
537
       440 FORMAT (IN 11414 GAMMA ENERGY GROUP BOUNDARIES READ) IN EU 4)
538
539
       450 FORMAT (1m +10(1x+1PE10.3))
540
       450 FORMAT (IN 1/14COMPUTED LETMARGY MIDTHS PER GROUP: DELUGGIA)
541
       470 FORMAT(IM ++6 =+:13:3x:+DELU(6) =+:19E10.3)
542
543
           RETURN
           END
544 c
545 c
546 C GEOM MENDS AND EDITS THE GEDMETRY FOR PERTURBED AND DETECTOR ZONES
547 c
548
           SUBRDUTINE GEDM (172:117:NTPZ:NFZ:NDZ:152:NP152:ND152:1PELĈ:
549
                               IDELE.PT.DT.KTP.KTD.KELP1.KELP2.KELD1.KELD2.
550
          2
                                JT+KPZ+KDZ+ITSUM)
551 c
552
           INTEGER PTIDTIMELPIIMELPEIMELPJIMELP4
553 c
           DIMENSION ITZ(1)+11T(1)+NTPZ(JT+1)+NPZ(1)+NDZ(1)+1DZ(JT+1)+
555
                       HPIDZ (3+1)+HDIDZ (3+1)+19EL2(1)+1DEL2(1)+PT (3+1)
556
557
                       DT (JT+1)+KTP (JT+1)+KTD (JT+1)+KELP1 (JT+1)+KELP2 (JT+1)+
                       KELD1 (JT+1)+KELD2 (JT+1)
556 c
559 C + + dutput comments + + + 560 C in nPid2(J+K) - identifies perturated zone + for annoly
```

```
NDIDZ (JIK) - IDENTIFIES DETECTOR ZONE & FOR BAND J
             IPELÉ(K) - PERT. ZONE K SHOWS UP IN IPELÉ(K) BANDS
IDELÉ(K) - DET. ZONE K SHOWS UP IN IDELÉ(K) BANDS
                          - PET. ZONE K SHOWS UP IN IDELÉ(K) BANDS

- PERT. ZONE K SHOWS UP IN THE BANDS PT(K:1) . . .

- DET. ZONE K SHOWS UP IN THE BAND DT(K:1) . . .
563 c
564 c
             PT (JJ:K)
565 c
             DT (JJ+K)
                           - IS PERT. ZONE H PRESENT IN BAND 2 7 0/1 NO/YES
566 c
             KTP (J+K)
                          - IS PERT. ZONE & PRESENT IN SHIP J ? O/1 ND/YES
567 c
              (H+E) GTH
             KELPI (JIK) - PERT. ZONE W IN BAND J STARTS WITH TRI. KELPI
568 c
             KELPŽ (J+K) - PERT. ZDNE K IN BAND J ENDS HITH THI. KELPŽ
569 C
             KELDÍ(J)K) - DET. ZDNE K IN BAND J STAMTS MITH TRI. KELDÍ
MELDÍ(J)K) - DET. ZDNE K IN BAND J ENDS MITH TRI. KELDÍ
570 c
571 c
572 c
573 C + + + IMPUT COMMENTS + + +
             111(J) = 0 Triangles in Band J

NTPZ(J+1Z) = 0 Number of Triangles in Zone 12 for Band J
574 c
             TIT(J)
575 c
576 c
577 c
             IDZ(J):IZ) - ZONE IDENTIFICATION FOR THE IZ'TH ZONE IN BAND J

ITZ(J) - 0 ZONES IN BAND J

KPZ - 0 PERTURSED ZONES
578 c
                           - # DETECTOR ZONES
579 c
             KDZ
                           - PERTURBED ZONE IDENTIFICATION FOR KPZ'TH PERT. ZONE
              NPZ (HPZ)
580 c
             NPZ(KPZ) - DETECTOR ZONE IDENTIFICATION FOR KDZ'TH DET. ZONE

ITEST - DETAILED DUTPUT DESIRED ? 0/67.0 NO/YES

JT - # BANDS
581 c
583 c
584 c
585 C READ IN " ZONES FOR EACH BAND 1721 " TRIANGLES FOR EACH BAND LIT
586 C READ IN # TRIANGLES IN EACH ZONE NTPZ
587 C READ IN ZONE IDENTIFICATIONS IDZ
588
         ITSUM=0
            DD 110 J=1+JT
589
           REND(5:402) ITZ(J):IIT(J)
ITSUM=ITSUM+IIT(J)
590
591
592
            12=172(J)
            PEAD (5:403) (HTPZ (J:1):1=1:12)
594
            MEAD(5:403)(IDZ(J:1):1=1:12)
595 110 CONTINUE
596 C READ PERTURBED ZONE IDENTIFICATION & NPZ
597 C READ DETECTOR ZONE IDENTIFICATION & NDZ
598
            PEND (5+403) (NPZ (1Z)+1Z=1+KPZ)
599
            PEAD (5:403) (NDZ (12):12=1:KDZ)
600 C SET IDENTIFIERS FOR PERTURBED AND DETECTOR ZONES
           DO 120 K=1+KPZ
601
            IPEL2(K)=0
602
            DD 120 J=1.JT
603
604
            KTP(J+K)=0
      120 CONTINUE
605
            DD 125 K=1.KDZ
€06
607
            IDEL2(K)=0
608
      125 CONTINUE
609
            DD 210 J=1.JT
610
611
            CL) STIPLE
            DD 130 12=1+33
612
             NFIDZ (J:IZ)#Ü
€13
      130 MDIDZ(J:12)=0
614
615
            pp 160 :z=1.33
616
            HPEHPZ (K)
617
             1F (1DZ (J+12) . NE. NP) 60 TD 150
            IF(KTP(J:K), NE. 0) 60 70 140 IPEL2(K)=IPEL2(K)+1
618
619
620
            ET(HEL2(H)+K)=J
621
       140 NPIDZ (3+12)#K
622
            KTP (J+K)=1
      150 CONTINUE
623
624
625
            DD 170 K=1+KDZ
626
             KTD (J+K) = 0
627
       170 CONTINUE
            DD 200 12=1+33
DD 190 K=1+KDZ
62B
€29
630
             NDENDZ (K)
631
             IF (IDZ (J. IZ) . NE. ND) 60 TO 190
             IF (KTD (J:K) . NE. 0) 60 TO 180 IDEL2 (K) = IDEL2 (K) +1
632
633
634
             DT (IDELE(K) +K)=J
635
      180 NDIDZ(J:1Z)=K
636
            KTD(JIK)=1
637
       190 CONTINUE
638
        200 CONTINUE
       210 CONTINUE
640 C
```

```
641 C SET TRIANGLE IDENTIFICATION FOR PERTURBED AND DETECTOR ZONES
642 C
643
            DE 280 J=1,JT
            DD 240 IZ=1+MPZ
IF(MTP(J+IZ),EB.0) GD TD 240
644
645
646
            KELP1 (J: 12)=1
647
            KELP2(J:12)=0
648
            HELPÉFITZ (J)
649
650
651
            DD 220 1=1.HELP2
            HELPIENTPZ (3:1)
            IF (MPIDZ (J+1) .EP.12) 60 TO 230
652
            HELP1 (J:12) =HELP1 (J:12) +HELP1
€53
      220 CONTINUE
      230 HELP2 (J:12) =HELP1 (J:12) +HELP1-1
654
655 C REPRE REMOVE NEXT CARD IN PROGRAM
656 WRITE(6:501) MELP1(J:IZ):MELP2(J:IZ):J:IZ
657 C RAPA END REHOVING
658
      240 CONTINUE
          DD 270 1Z=1+KDZ
659
660
           IF (HTD (J+12) .ER. 0) 60 TO 270
661
            KELD1 (J: 12)=1
662
            KELD2(J+1Z)=0
            HELP4=172(J)
663
            DD 250 1=1:HELP4
664
            HELPS=NTPZ (J+1)
665
            IF (NDIDZ (J+1).EB. 12) 60 TO 260
666
667
            KELD1(J)12)=KELD1(J)12)+ HELPJ
      250 CONTINUE
66.B
669 260 HELDŽ(J:1Z)#HELDZ(J:1Z/:HELDZ(J:1Z/:HELDZ(J:1Z):J:Z
670 C RRRR REHDUE NEST CARD IN PROGRAM
671 HRITE(6:502) HELDZ(J:1Z/:HELDZ(J:1Z):J:IZ
       260 HELD2 (3:12) =HELD1 (3:12) +HELP3-1
672 C END MEMOVING
673 270 CONTINUE
673
674
      280 CONTINUE
675 c
676 C EDITING
677
678
679
          MPITE (6:410)
           HPITE (6:410)
680
            12=1TZ(J)
681
            MRITE (6:409) J
682
            HRITE (6:408)
683
            WRITE (6:405) (IDZ (J:I): I=1:IZ)
            HRITE (6+408)
654
685
            MPITE (6+404) (NTPZ (J+1)+1=1+12)
686
            HRITE (6:406) (HPIDZ (3:1):1=1:12)
687
            HRITE (6:407) (NDIDZ (3:1):1=1:12)
688
            MRITE (6:410)
       290 CONTINUE
689
690
            HPITE (6:410)
691
            HRITE (6:411)
€92
            DO 310 K=1+KPZ
693
            IPELFIPEL2(K)
            HRITE(6:412) K: IPEL
HRITE(6:413) (PT(J:K):J=1:IPEL)
694
695
€96
       310 CONTINUE
697
            HPITE (6:410)
698
            MPITE (6:415)
699
            DD 320 H=1+KDZ
700
            IDEL=IDEL2(K)
701
            MRITE (6:414) KIIDEL
702
703
            HRITE (6:413) (DT (J:K):J=1:1DEL)
      320 CONTINUE
704 c
705 C PRES RESDUE FOLLOWING CARDS IN ACTUAL PROGRAM
706
707
          ыніте (6+410)
ыніте (6+500)
эр 330 д=1+дт
708
709
            HRITE (6:503) (KTP (J+K)+K=1+KPZ)
710
       330 MPITE (6:504) (MTD(J:K):K=1:KDZ)
711
       500 FORMAT (IN :40H+ + + TRIANGLE INFO FOR PERT ZONES + ++)
       501 FORMAT(IM +11x+9m JUNKDUT +218+3H M=13+4H JJ=13)
502 FORMAT(IM +11x+9m JUNKDUT +218+3H M=+13+4H JJ=+13)
712
713
       503 FORMAT (1H +20×+3HHTP+2×+1216)
715
       504 FORMAT (1H +20x+3HKTD+2x+1216)
716 C RAPA END MEHOVING
717
       401 FORMAT (16)
718
       402 FORMAT (216)
719
       403 FORMAT (12:6)
       404 FORMAT (IN +8x+11H= TRIMMGLES+15(16+1x))
720
```

```
721
        405 FORHAT (1H +10x+9H ZONE ID.+15(36+3H4))
722
723
724
        406 FORMAT (IN :8x:11MPERT. ZDNE?:15(16:1x))
407 FORMAT (IN :9x:10MDET. ZDNE?:15(16:1x))
        408 FORHAT (1H +20>+15(7H++++++)+/)
725
        409 FORMAT (1H +12H+++ BAND # =+16+4H +++)
        410 FORMAT(IN 1/1/)
411 FORMAT(IN 127H000 PERTURBED ZONE INFO 000)
412 FORMAT(IN 110x116HPERTURBED ZONE G112128H IS PRESENT IN THE FOLLOW
726
727
728
729
            TINGITÉIGH BANDS)
       413 FORMAT(IM +20x+2014)
414 FORMAT(IM +10x+15MDETECTOR ZONE $12+28H IS PRESENT IN THE FOLLOWS
730
731
            ING: IÈ+6H BANDS)
733
        415 FORMAT (1H +26H+++ DETECTOR ZONE INFO +++)
734
             RETURN
735
736 c
             END
737 C SUBROUTINE DETSEN CALCULATES DETECTOR RESPONSES AND DETECTOR 738 C SENSITIVITY PROFILES. IF DETCOVEL A DETECTOR UNCERTAINTY ANALYSIS
739 C IS PERFORMED
740 c
             SUBMOUTINE DETSENIKELDIRKELDERKTDIRDZIJTIJITIJEMIJOUTPUTIDETCOVI
741
742
                                   RRICOVRIFSUMRIPHIVIRIZONISENRISSENRISIGHAIDELUIEI
743
                                   NCDUPL : 16ED)
744
745
746
             DIMENSION MELDI (JT:1) : MELDZ (JT:1) : MTD (JT:1) : JIT (1) : DELU (1) : E (1) :
                          PHIU(1)+P(HTZ+1)+SSEN#(HDZ+1)+ZDN(1)+CDUR(IGH+1)+
747
                           SENR (1) : FSUMP (1) : SIGNA (MDZ: 1) : EE (50)
748
749
            COMMON /PLOT/ TITLE (8)
             INTEGER S.DETCOV
750
751
752
            DATA CPI/6.283185308/
753
            IF(16ED.EB.1) CPI=1.0
753 IF (1660.68.1) CPI=1.0
754 C
755 C MEAD AND EDIT DETECTOR MESPONSE FUNCTIONS
756 DD 120 M=1.MDZ
757 MEAD (5.410) (SIGMA(N.6).6=1.16M)
758 MRITE (6.420) K
759 DD 110 G=1.16M
760 110 MRITE(6:430) 6:SIGHA(K:6)
761 120 CONTINUE
762 C
763 C INITIALIZE
764
765
             DE 130 6=1-16H
       130 SENR (6)=0.0
766
767
            DD 150 K=1+KDZ
             ZDN(#)=0.
768
             DD 140 6=1:16H
769
             # (k+6)=Ü.
770
             SSEN# (#+6)#0. D
771
       140 CONTINUE
772
       150 CONTINUE
773
             mm=Ú.
774 c
775 C CALCULATE GADUPHISE AND ZONEHISE RESPONSES # (#+6)
776
777
778
            REMIND 1
DD 200 S=1:16H
DD 190 J=1:JT
779
             DD 180 K=1.KDZ
780
             IF (HTD (J:H).EF. D) SO TO 180
781
              IZ=MELD2 (J:K)-KELD1 (J:K)+1
782
783
             MEAD(1)(PHIV(I)+I=1+IZ)
DD 170 I=1+IZ
784
             R (K+6) =# (K+6/+PHIV(I)+SIGHA (K+6)
785
       170 CONTINUE
786
        180 CONTINUE
787
        190 CONTINUE
768
       200 CONTINUE
789 c
790 C CALCULATE TOTAL MESPONSE FUNCTION MA
          DD 220 6=1+16M
SENR(6)=0
791
792
793
             DD 210 #=1+#DZ
794
             #####+CP1+# (K+6)
795 210 CONTINUE
796 220 CONTINUE
797 C
798 C CALCULATE SENSITIVITY PROFILES
799 MRITE (6,525)
             DD 240 6=1:16H
600
```

```
801
            DD 230 ₩=1+KDZ
802
             IF (SIGHA (#+6).EB. 0. 0) 60 TO 230
803
            R/k1G)=R(K1G)+CPI
            HPITE (6:530) KISIR (KIS)
804
805
            SSENH(H+G)=P(H+G)/(RP+DELU(G))
806
             SENRIG) = SENRIG) + SSENRIKIG)
507
       230 CONTINUE
808
       240 CONTINUE
RN4 C
810 C SET UPPER-BOUNDABLES FOR GROUPS
811 IF (NCOUPL.EB.0) GO TO 270
812
            DD 250 G=1:NCDUPL
813
             EE (6) =E (6)
       250 CONTINUE
814
815
            NCPIENCOUPL + 1
            DO 260 6=NCP1+16H
816
817
            EE (6) RE (6+1)
618
       260 CONTINUE
       60 TO 290
270 DO 280 6=1+16H
819
820
821
            EE (6) =E (6)
822
       280 CONTINUE
823 c
824 C EDIT SENSITIVITY PROFILES SUMMED DUER ALL DET. ZONES
825 290 MRITE(6:440) (TITLE(1):1=1:8)
            MPITE (6:450)
826
827
            HRITE(6:460) MR
828
            WRITE (6:470)
            HPITE (6:490)
829
            DD 300 6=1:16H
830
             HRITE (6:500) 6:EE (6) +DELU(6) +SENR(6)
831
835
       300 CONTINUE
833
            HRITE (6:510)
834
835 c
             HRITE (6:520) 1.0
836 C DD UNCERTAINTY AMALYSIS IF DESIRED
            1F (DETCOV.NE.1) 60 TO 310
837
838
             CALL SUBSICOURISENIFSUMPISEMIDELU)
839 c
840 C EDIT SENSITIVITY PROFILES FOR INDIVIDUAL ZONES
       310 if (inutput.em. 0) on to 360
841
            DD 320 6=1:164

2DN(K) = 2DN(K) + SSENP(K:6)+DELU(6)
842
643
844
845
       320 CONTINUE
846
847
            DD 350 H=1+KDZ
848
            WRITE (6:440) (TITLE (1):1=1:6)
849
            HRITE (6:450)
850
851
            HPITE (6:460) PR
            HP17E (6:480) K
625
            HPITE (6:490)
653
            pp 340 c=1.1cm
254
             HPITE (6:500) SIEE (6) IDELU (6) ISSEND (KIE)
855
856
       340 CONTINUE
            HPITE(6:510)
HPITE(6:520) ZDN(K)
857
       350 CONTINUE
858
859 C FORMATS
860
        410 FDMMAT (6E12.5)
       420 FORMAT (1M +/+ MENERGY DISTRIBUTION OF DETECTOR MESPONSE FUNCTION $516MA(H+6) BY GROUP FOR DETECTOR ZONE & 4+16) 430 FORMAT (5M 6 = +13+3x+19e12+5)
B61
862
863
864
865
        440 FDRHAT (IM +/+6610+/)
       450 FORMAT(IM :24(IM+):+ SENSITIVITY PROFILE FOR THE DETECTOR RESPONS SE FUNCTION R(6) +:25(IM+))
866
667
        460 FORMAT (1H + SENRIG) IS PER LETHARGY-HIDTH DELTA-U AND NORMALIZED
       STD THE TOTAL RESPONSE ON E (RIPHI) # +1PE12.5+/)
470 FORMAT(IN :+FOR THE SUN DUER ALL DETECTOR ZDNES+)
480 FORMAT(IN :+FOR DETECTOR ZDNE KE+:13:/)
490 FORMAT(IN :+ SHOUP UPPER-E(EV) DELTA-U+:8x:+SEND+)
868
869
870
871
872
        500 FDRHAT (IM +15:2x: 1PE10.3:2x: 1PEY.2:4x: 1PE10.3)
873
       874
       520 FORMAT (IN +1x++INTEGRAL++23x+1PE18.3+/)
       525 FORMAT (46H + + + RESPONSE BY GROUP AND DETECTOR ZONE + + +)
536 FORMAT (1H +26HRESPONSE FOR DETECTOR ZONE+13+10H AND GROUP+13+
675
676
€77
€78
679
            12×+= 12.5)
       360 METURN
            END
880 C
```

```
881 c
BÉÉ C SUBBOUTINE TAPAS ASSIGNS LOGICAL UNITS TO THE ANGULAR FLUXES AND THE
883 C FLUX MOMENTS
884 C
885
           SUBRDUTINE TRPAS (KTAP+MM+NM+ITSUM+IGH+MAXHAD+KTP+
886
                             KELPIIKELPZIKPZIJT)
887
888 C + + + INPUT COMMENTS + + +
                       * MAZIMUM NUMBER OF HORDS ON A LOGICAL UNIT
              MARHAD
889 6
                         - NUMBER OF GROUPS
890 c
              16H
891 c
              ITSUM
                        E TOTAL NUMBER OF TRIBAGLES
892 c
              NM
                         - NUMBER OF MOMENTS
              MM (C)
                        # D DUADRATURE DIRECTIONS/BUADRANT FOR GROUP 6
893 c
894
895 C + + + DUTPUT COMMENTS + + +
896 C
697 C HHERE!
             KTAP (5:16H) = LOGICAL UNITS FOR FLUXES
898 c
             MTAP(1.6) & LOGICAL UNITS FOR ANGULAR FLUXES
              HTAP (2:6) = LOGICAL UNIT FOR ADJOINT ANGULAR FLUXES FOR GROUP 6
699 c
              KTAP(3:6) = LDGICAL UNITS FOR ADJOINT AMOULAR FLUXES-MANDON ACCESS KTAP(4:6) = LDGICAL UNIT FOR FLUX MOMENTS FOR GROUP 6
900 c
901 c
              KTAP (5+6) = LOGICAL UNIT FOR ADJOINT FLUX MOMENTS
902 c
903
          DIMENSION HTAP (5:1) HMM (1) HTP (JT:1) HELP1 (JT:1) HELP2 (JT:1)
904
905
906
          INTEGER 6:66
907
908
          DD 200 1=1.2
      200 PERD (5:410) (KTAP (1:6):6=1:16H)
LAST = KTAP (2:16H) + 1
9119
910
           ISUM=0
911
912
          DO 230 6= 1:16H
           66=16H-6+1
913
914
           ANGHOR=ITSUH+HH(66)
915
           IF (ANGHOR. GT. HARHAD) 60 TO 240
916
           ISUM = ISUM+ANGHOR
           IF (ISUM.LT.MAXMED) 60 TO 210
917
918
           ISUMPANGHOR
919
           HTAP (3:66)=LAST+1
920
           60 TO 220
      210 HTAP (3:66) #LAST
921
922
      220 LASTENTAP (3:66)
923
      230 CONTINUE
           60 TD 250
924
925
      240 MRITE (6:420)
926
          STOP
      250 LASTENTAP (3:1) + 1
927
928
           DD 290 1=1.2
           IF (1.EB.2) LAST = HTAP (4:16H)+1
929
930
           1=3+1
931
           15UM=Ú
932
           IPLDF=0
           DD 255 J=1.JT
DD 255 K=1.KPZ
933
934
935
           IF (MTP (J+H).EB. 0) 60 TD 255
936
           IPLDF=IPLDF+KELP2(J+K)-KELP1(J+K)+1
937
      255 CONTINUE
938
           MONHORE IPLOF ONH
939
           IF (HOHHOP.ST. HANHED) SO TO 240
940
           DD 280 66=1.16H
941
           6×46
942
           IF (I.ED.2) 6=16H-66+1
943
           ISUM = ISUM + HOMHOR
944
945
           IF (ISUM.LT.MAXHAD) 60 TO 260
           ISUMENDAMOR
946
           KTOP (IP+6) SLOST+1
947
           60 TD 270
948
      260 HTAP (IPIG)=LAST
949
950
      270 LASTENTAP (IPIG)
      280 CONTINUE
951
      290 CONTINUE
952
       410 FDRHAT (1216)
953
954
       420 FURNAT (1M +50H + + + ERADA XXX - VALUE DF MAXHAD TOD SMALL + + +)
           METURN.
955
           END
956 c
957
958 c
959 c
           SUBROUTINE SNCON (CE+CH+MT+NUP+NPB+MH+MNPB+MMEL+1SN+16H+
```

960

```
961
            1
                                 IDET)
 962
             LEVEL É.CE.CM
 964
             DIMENSION CH (MNPB:4:1):CE (MNPB:4:1):NT (1):NUP (MNEL:1):NEL (4):
 965
 966
            11ELS (8) + SN (4) + NPB (1) + 1SN (1) + NM (1)
 967
 968
969
970
             DIMENSION U4(3): U6(6): U8(10): U10(15): U12(21): U14(28): U16(36)
            INTEGER 6
 971
 972
973
             DATA U2/.5773503/
             DATA U4/.8688903+.3580212+.3500212/
 974
             DATA U6'.9320646.6815646.6815646.2561429.2663443.2561429/
 975
976
             DATA US/ .9603506+.6065570+.8065570+.5512958+.5773503+.5512958+
            1.1971380,.2133981,.2133981,.1971380 /
 977
978
979
            DATA U10/ .9730212.6721024.8/21024.6961286.7212773.6961286.
1.4567576.4897749.4897749.456/576.1631408.1755273.1755273.
            2.1755273 .. 1631408 /
            DATA U12/.9810344..9080528..9080528..7827706..8030727..7827706.
1.6040252..6400755..6400755..6040252..3911744..4213515..4249785.
 980
 981
            2.4213515,.3911744,.1370611,.1497456,.1497456,.1497456,.1497456,
 982
 983
            3.1370611 /
           DATA 014/ .9855865.9314035.9314035.8362916.8521252.8362916.
1.7010923.7324250.7324250.7010923.5326134.5691823.5773503.
2.5691823.5326134.3399238.3700559.3736108.3736108.3700559.
 984
 985
 986
 987
            3.3399236 .. 1196230 .. 1301510 .. 1301510 .. 1301510 .. 1301510 .. 1301510 ..
 988
            4.1196230 /
           989
 990
 991
 992
           4.3016701,.1050159,.1152880,.1152880,.1152680,.1152680,.1152880,
5.1152880,.1050159 /
 993
 994
 995
            DATA SN/1.0:-1.0:-1.0:1.0/
 996 c
 997 c
 998
            READ (5:440) (ISN(6):6=1:ISM)
 999
             DD 350 6=1.16M
1000
        120 MELSISH(6)/2
             60 TD (130,150,170,190,210,230,250,270) + HEL
1001
        130 DD 140 L=1.4
1002
1003
             NPD (L)=1
1004
             CE (1+L+6) = SN (L) +U2
1005
             MT (6)=0.25
1006
        140 CONTINUE
        60 TD 290
150 DD 160 L=1+4
1007
1008
1009
             NPP (L) =3
1010
             DD 160 M=1.3
1011
             CE (M1L16) = SN (L) +U4 (M)
             HT (6) = 0.06333333
1012
1013
        160 CONTINUE
1014
             ●□ T□ 290
        170 DD 180 L=1.4
1015
1016
             NPD (L)=6
1017
             po 180 m=1.6
1018
             CE (M+L+67=$N(L)+06(M)
1019
             HT (6)=0.04166667
1020
        180 CONTINUE
             60 TD 290
1021
        190 DD 200 L=1.4
1022
             MPP (L)=10
1023
1024
             DD 200 M=1.10
             CE (H+L+6)=SN(L) OUB (H)
1025
1026
             MT (6)=. 025
1027
        200 CONTINUE
        €D TD 290
210 DD 220 L=1.4
1028
1029
1030
             NPP (L)=15
1031
             DD 220 H=1.15
1032
             CE (M+L+&)=$N(L)+U10(M)
1033
             MT (6)=0.01666667
1034
        220 CONTINUE
        6D TD 290
230 DD 240 L=1+4
NPF(L)=21
1035
1036
1037
1038
             DD 240 M=1.21
             CE (M+L+6)=SN(L) 012(M)
MT(6)=U, 01190476
1039
1040
```

```
1041
       240 CONTINUE
           60 TD 290
1042
1043
       250 DE 260 L=1.4
1044
            NPB(L)=28
            DD 260 H=1,28
1045
            CE (M+L+6)=SN(L)+U14(M)
1046
            HT (6)=0.008928571
1047
1048
       260 CONTINUE
       270 DD 280 L=1.4
1049
1050
            NPD (L)=36
1051
            DD 280 M=1.36
1052
            CE (M+L+6/#SN(L) +U16(M)
1053
            HT (6) = 0. 006944444
1054
       280 CONTINUE
1055
1056
       290 MM (6)=4+NPE (1)
1057
           DO 310 IL=1+MEL
            DD 300 L=1+4
1058
1059
           NUP (ILIL)#IL
1060
       300 CONTINUE
            IELS(IL)=(IL+(IL-1))/2
1061
1062
       310 CONTINUE
            DD 320 L=1.4
1063
1064
            NEL (L) PHEL
       320 CONTINUE
1065
           DE 330 IL=1.MEL
1066
1067
            ILI=MEL-IL
1068
           DO 330 MP=1+1L
1069
            METELS (IL)+MP
            MIRIELS (IL1+MP)+MP
1070
            CH (H: 4: 6/ =-CE (H1:4:6)
1071
1072
            CH (H) 3:6/=-CE (H1:4:6)
1073
            METIELS (IL) +IL-MP+1
1074
            CH (H2+1+6)=CE (H1+4+6)
            CM (ME+2+6) #CE (M1+4+6)
       330 CONTINUE
1076
1077
1078 C EDIT SH-SETS BY GROUP IF IDPT EQUAL TO 1 DR 3
1079
           IF(IDPT.NE.1.AND.IDPT.NE.3) 60 TO 350
           MRITE (6:410) 6: ISN(6)
DD 340 L = 1: 4
MRITE (6:420) L
1080
1021
1082
1083
            MPD = MPB(L)
1084
            DD 340 M = 1, MPB
            HRITE (6:430) MICH(MILIS) ICE (MILIS) INT (6)
1085
       340 CONTINUE
1086
1067
       350 CONTINUE
       410 FDRHAT (///1x:27H+ + + + + BUADRATURE GROUP :13:10H + + + + + //
1088
       113x 22HBUILT-IN CONSTANTS: S-12 )
420 FORMAT (//7x) 9HPUADBANT : 11//26X; ZHMU: 17x: 3HETA: 14x; 6HHE16HT/)
1089
1090
       430 FORMAT (5>+13+3E20.8)
1091
1092
       440 FORMAT (1216)
1093 €
1094
1095
            END
1096 C
1097 C SUBROUTINE PAGEN HAS BEEN COPIED AND MODIFIED FROM THE TRIDENT-CTR
1098 C CDDE.
1099 C THIS SUBBOUTINE GENERATES SPHERICAL HARMONICS POLYNOMIALS AND
1100 C STORES THEM IN THE PROPER DRIER, COMMESPONING WITH A DIRECT DR
1101 C ADJDINT PLUX-HOHENT CONSTRUCTION.
1102 c
1103
            SUBBOUTINE PHGEN (PIBICHICEIPHHIITINHILMAXINNPBINHILMAXPIGIKADIISH)
1104
1105
            LEVEL 2. CE.CH
1106
            DIMENSION ON (MMPB+4+1)+CE (MMPB+4+1)+PHHI (1)+T(1)+P (MMPB+LMAXP+1)+
1107
1108
           1# (NM+1)+MM (1)+1SN (1)
1109
1110
           INTEGER &
1111
            DATA CPI/3.1415926/
1113
1114 C + + + INPUT COMMENTS + + +
1115 c
               CH (HNPB: 4: IGH) BUADPATURE HU'S
               CE (HNPB:4:16H) BUADRATURE ETA'S
1116 C
               MM (6)
                                E DUADPATURE DIRRECTIONS FOR GROUP 6
1117 c
                               DRIER OF SCATTERING
1118 c
               LHAX
1119 c
               LHAXP
                               TOTAL NUMBER OF HOMENTS
1120 c
               NH
```

```
1121 c
                6
KAD
                                   GROUP INDEX
1155 C
                                   IDENTIFIER ADJOINT OF DIRECT FLUXES
1123
1124 C + + + DUTPUT COMMENTS + + +
1125 c
                                 SPHERICAL HARMONICS POLYNOMIALS REARRANGED IN
THE DUADRANT SEQUENCE 3:2:4:1 IF HAZ=0
AND IN THE SEQUENCE 1:4:2:3 IF HAZ=1
                R (NH+HH (G))
1126 C
1127 c
1128
1129
             NEL=ISH(6)/2
1130
             IF=2+LMAX+1
1131 c
1132 C
             GENERATE FACTORIALS
1133 c
1134
             \tau(1)=1.0
             DD 100 J=2+1#
T(J)=(J-1)+T(J-1)
1135
1136
1137
        100 CONTINUE
1138
             mp=0
1139
1140
             DD 210 LE=1.4
             MPD=MM (6) /4
1141 c
1142 c
             GENERATE PHHI
1143 c
1144
             DD 110 H=1.HP#
1145
             PHH1 (M)=0.5+CP1
1146
             IF (CE (M+LB+6) .NE. 0. 0) PHHI (M)=ATAN (SERT (1. 0-CM (M+LB+6) ++2
1147
            1-CE (HILBIG) ++2) /ASS (CE (HILBIG)))
1148
             IF (CE (HILBIG).LT. 0.0) PHHI (MIPHHI (M)+CPI
        110 CONTINUE
1149
1150 c
1151 c
             ZERO DRIER ASSOCIATED LEGENDRE POLYHOMIALS
1152 c
1153
1154
             DD 130 M=1, MP6
             CECH (MILBIG)
1155
             P(M:1:1)=1.0
1156
             IF (LMAX.EB. 0) GD TD 130
1157
1158
1159
             P(H:2:1)=C
             IF (LMAX.ER.1) 60 TO 130 DD 120 N=2:LMAX
1160
             P(M+N+1+1)=C+(2.0-1.0/N)+P(M+N+1)-(1.0-1.0/N)+P(M+N-1+1)
        120 CONTINUE
1161
1162
        130 CONTINUE
1163
             IF (LMAX.ED. D. AND. HAD. ED. U) GD TD 180
1164
             IF ( LMAX.EB. U. AND. HAD. EB. 1) 60 TO 220
1165 c
1166 C
             HIGHER DRDER ASSOCIATED LEGENDRE POLYNOMIALS
1167 c
1168
             20 160 M=1.HP#
1169
             CECH (HILDIG)
1170
             DO 160 JEZILMANA
1171
             DD 160 N=1+LMAXP
IF (N=3) 160+140+150
1172
1173
1174
        140 p(m:n:3)=-(2+3-3)+spat(1.0-c++2)+p(m:n-1:3-1)
        150 IF (N.EB.LMAIP) 60 TD 160

P(M:N+1:J)=((2+N-1)+C+P(M:N:J)-(N+J-2)+P(M:N-1:J))/(N-J+1)
1175
1176
1177 €
       160 CONTINUE
1178 c
1179 c
             MULTIPLY BY COS(PHHI) TERM AND FACTORIAL COEFFICIENT
1180
             DD 170 J=2.LHAYP
1181
             DO 170 HEJILHAXP
1182
             3=50#T (2. 0+T (N-J+1) /T (N+J-1))
             DD 170 H=1:HPB
1183
1164
             CEPHHI(M)
1185
             AAP=CDS ((J-1)+C)
1166 C
             IF (G.ED. 1) WRITE (10:420) 3:P(H:N:J):MAP
1167
             P(H:N:J)=3+P(H:N:J)+CDS((J-1)+C)
       170 CONTINUE
1168
1189 c
1190 c
             REDUCE NUMBER OF INDICIES AND REARRANGE
1191 c
1192
1193
             IF (MAD.NE. 0) 60 TO 220
        180 IF (LD.EB.1) HP=30HPB
IF (LD.EB.2) HP=HPB
IF (LD.EB.3) HP=0
1194
1195
1196
             IF (LD.EB.4) MP=2+MPB
             ec= 1
1196
             DD 200 H=1+LHAXP
             DD 200 J=1+N
DD 190 M=1+MPB
1200
```

```
1201
            # (F 1H+H) =P (H+H+1) #
       190 CONTINUE
1202
1203
           *=++1
       200 CONTINUE
1204
           6D TD 210
1205
       220 IF (LB.ER. 1) MP=0
12:06
           IF(LD.ED.2) MP=20MPB
IF(LD.ED.3) MP=30MPB
IF(LB.ED.4) MP=MPB
1207
1208
1209
1210
           K=1
1211
            DO 240 N=1+LHAXP
           meverse count on each eta level for abjoint homents \ensuremath{\mathsf{m=1}}
1212
           DD 240 J=1:N
1213 C
1214
1215
            INDEX1=1
1216
            DD235 IJ=1:NEL
            INDERIFINDEX1+13-1
1217
            DD 230 H1=1+13
1218
1219
            INDEXE=1J-M1
            INDE & 3 = INDE x 1 + INDE x 2
1220
            B(K:MP+INDEX3) =P(M:M:J)
1221
1222
           M=m+1
       230 CONTINUE
1223
1224
       235 CONTINUE
1225
           K = K + 1
       240 CONTINUE
12:26
1227
       210 CONTINUE
            DD 500 1=1.10
1228
            IF (G.EB. 1) WHITE (18:420) (#(1:3):3=1:12)
1229 c
1230
       500 CONTINUE
1231
       420 FORMAT (6E12.5)
         RETURN
1232
1233
           END
1234 c
1235 C SUSPOUTINE FLUXHOM GENERATES THE FLUX HOMENTS
1236 c
1237 c
            SUBPOUTINE FLUXMOM (IIT+FFLUX+FLUX+FUX+M+M+F+TAP+6+16M+
1236
                                 PPZ+NM+JT+PPIT+MA+MAD+PAD+KTP+FELP1+FELP2+
1239
1240
                                 KTD+HELD1+HELD2+FHOH+HDZ+IAP3>
1241
1242 C + + + INPUT COMMENTS + + +
              FFLUX (ITSUM+HH (6) /4) PHOULAR FLUXES IN LCM
1243 c
               FLUX (ITSUMPMM (6) /4) ANGULAR FLUXES IN LCM
1244 C
1245 c
               H(ISH)
                                  BUADRATURE MEIGHTS
1246 c
               117(31)
                                    STRIBNGLES/BOND
1247 c
               MM (G)
                                    TOTAL # DUADPATURE DIRECTIONS
1248 c
               KTRP (16H)
                                    IDENTIFIES FILES FOR ANGULAR FLUXES
1249 C
                                    GROUP INDEX
TOTAL # GROUPS
               •
1250 c
               16M
                                    NUMBER OF MOMENTS
1251 c
               NH
1252 c
               37
1253 c
               KAD
                                    IDENTIFIER ADJOINT/DIRECT FLUXES
                                    PANION ACCESS FILE ALTRESS INDICATOR SCALAR FLUXES IN DETECTOR REGION
1254 c
               MPIT
1255 c
               FHOM
1256
1257 C + + + BUTPUT COMMENTS + + +
1258 c
              DEPENDING UPON THE PARAMETER HAD! DIRECT OF ADJOINT
1259 c
               FLUF HOHENTS ARE CALCULATED AND WRITTEN
               THE ZERD'TH MOMENTS OF THE DIRECT FLUX ARE SORTED DUT AND
1260 c
               HPITTEN DN TAPE!
1261 c
1262 c
1263 c
               FUX (NHIJTIIT (JT)) FLUX MOMENTS
1264
           LEVEL 2: FFLUX:FLUX:FUX:FHOH
1265
1266
            DIMENSION FFLUX (1) : FLUX (1) : FUX (NH: JT: 1) : KTAP (5:1) : H (1)
1267
1268
            DIMENSION MM(1) + P(NM+1) + IIT (1) + IMOLTH(23) + JPMAM (10)
            DIMENSION HTP (JT+1)+HELP1 (JT+1)+HELP2 (JT+1)
1269
1270
           DIMENSION HTD (JT: 1) + KELD1 (JT: 1) + KELD2 (JT: 1) + FMOH (JT: 1)
1271
1272
1273
            INTEGER SOUNTOUNZOUNS
1274
1275 C INITIALIZE
1276
1277
            16 = KAD + 1
            IF (MAD. NE. 0) 60 TO 130
1278
            MH2 = HH (6)/2
1279
1280
            UN1 = HTAP (1616)
```

```
UNE = HTMP (164316)
1281
             IF (HTAP (1616) .NE.KTAP (1616-1) .DR.6.E8.1) 60 TO 100
1282
1283
             GD TD 110
1284
        100 CALL ASSIGN (UM1+0+-3)
             MEAD (UN1) (IMPLTH (MK) + MH=1+23)
HRITE (7+1000) (IMPLTH (MK) + MH=1+23)
1285
1286 c
1287
       1000 FORMAT (23n4)
             READ (UN1) (JP#AH(HW)+HW=1+10)
HRITE (7+1010) (JP#AH(HW)+HW=1+10)
1288
1289 c
       1010 FDMMAT (1216)
1290
1291
        110 IF (KTAP (16+3+6).NE.KTAP (16+3+6-1).DR.G.EB.1) 60 TO 120
1292
             GD TO 190
        120 CALL ASSIGN (UN2+0+-3)
CALL FAMSIZ (UN2+MAXHAD)
1293
1294
1295
             6D TO 190
1296
1297 C INITIALIZE FOR THE ADJOINT CASE
1298
        130 G=16H-6+1
             MH2=MH (6)/2
1299
             UN1=FTAP (16+6)
1300
1301
             UN2=HTAP (16+3,6)
1302
             UNSERTAP (316)
             1F(+TAP(16:6).NE.KTAP(16:6+1).DR.6.EB.16H) 5D TO 140
1303
1304
             GD TD 150
1305
        140 CALL ASSIGN (UN1:0:-3)
1306
             READ (UN1) (IMPLTH (KK) + KK=1+23)
READ (UN1) (JPRAM (KK) + KK=1+1U)
1307
        150 IF (HTAP (16+3+6) . NE. KTAP (16+3+6+1) . DR. G. EB. 16H) 6D TD 160
1308
1309
             GD TD 170
1310
        160 CALL ASSIGN (UN2: 0:-3)
1311
             CALL FAMSIZ (UN2+MAXHAD)
        170 IF (HTAP (316) . NE. KTAP (316+1) . DR. 6. EB. 16H) 6D TD 180
1312
             60 TO 190
1313
        180 CALL ASSIGN (UNG: 0:-3)
CALL FAMSIZ (UNG: MAXMAD)
1314
1315
1316
             KRIT#1
       190 CONTINUE
1317
1318
1319 C INITIALIZE FLUX MOMENTS
1320
1321
             DD 205 J=1.JT
            TTJ=117(J)
DD 205 1T=1:1TJ
DD 200 IN=1:NM
1322
1323
1324
1325
        200 FUX (1N+J+1T)=0.
1326
        205 FHOM (3:17)=0
             JJT=29JT
1328
1329
             דננ:1=1 206 ממ
1330
1331 C READ ANSULAR FLUXES 1332
1333
             ICDUN1=1
1334
             JJ=J
1335
             IF(J.GT.JT) JJ=2+JT-J+1
1336
             5 mm (LL) TIT=LTIT
1337
             173=117 (33)
1336
             mmy=mm2/2
1339
             DO 210 MMI=1+MMX
1340
             1CDUNEFICBUNI+ITJ-1
             PEAD (UN1) IK
READ (UN1) (FFLUX (ICDUN) > ICDUNFICDUN1 + ICDUN2)
1341
1342
1343
             ICOUNI=ICOUNZ+1
1344
       210 CONTINUE
1345 c
             IF (HAD.EB. 1) WAITE (7:420) (FFLUX (ICDUN) : ICDUN=ICDUN1: ICDUN2)
             IF (HAD.NE. 1.DP. 1AP3.EB. 1) GD TD 230
             MRITE (10:430) MRIT
1347 c
             CALL MDISK (UNS:FFLUX:IITJ:KRIT)
1348
1349
             LTII+TIRNATIRN
1350
        230 ICDUN1=1
             DD 220 MMI=1+MMX
1351
1352
1353
             1CDUNE=ICDUN1+ITJ-1
             MEAD (UN1) 1K
MEAD (UN1) (FLUY (ICDUN) ; ICDUN*ICDUN1; ICDUN2)
1354
1355
1356
1357 c
             1CDUH1=1CDUH2+1
        220 CONTINUE
             IF (HAD.EB. 1) WRITE (7: 420) (FLUX (ICDUN) + ICDUN=ICDUN1+ICDUN2)
             IF (WAD. NE. 1. DR. 1803. EE. 1) 60 TO 250 HPITE (10:430) WRIT
1356
1359 c
1360
             CALL MDISK (UN3:FLUX:IITJ:KRIT)
```

```
1361
            KRITSKRIT+IITJ
1362
1363 C CALCULATE PLUX MOMENTS IN PERTURBED ZONES
1364 250 IF (J.GT.JT) GO TO 320
1365 DO 315 H=1+KPZ
            IF (HTP (JJ+K) .EB. 0) 60 TO 315
1366
            ITI=FELPI (JJIK)
1367
1366
            ITE=MELPE (JJIK)
            mm1=mm2/2
1369
1370
            ICOUNTED
1371
            ICOUNTIT1
            DD 280 IM=1:001
DD 270 IT=IT1:IT2
1372
1373
            DD 260 IN=1+NH
1374
1375
       260 FUX (INIJI) = FUX (INIJI) + H(6) +R(INIH) +FFLUX (ICDUN)
1376
            ICDUNEICDUN+1
       270 CONTINUE
1377
1378
            ICDUNT=ICDUNT+ITJ
1379
            ICDUN=1CDUNT+IT1
       280 CONTINUE
1380
            ICDUNT=0
1381
1382
            ICDUN=IT1
1383
            mm1=mm2/2+1
            DD 310 IM=MM1.MM2
DD 300 IT=IT1.IT2
1384
1385
            DD 290 1N=1+NM
1386
       290 FUX (IN:33:IT) = FUX (IN:33:IT) + H(G)+R(IN:IH)+FLUX (ICDUN)
1387
1388
            ICDUN=ICDUN+1
       300 CONTINUE
1389
            ICDUNT#ICDUNT+IT#
1390
1391
            1CDUN=ICDUNT+IT1
       310 CONTINUE
1392
1393
       315 CONTINUE
       60 TD 390
320 DD 385 K=1+KPZ
1394
1395
            IF (HTP (JJ+K).EB. 0) 60 TO 385
1396
1397
            ITIEKE_PI(JJ+H)
1398
            ITÊ=KELPÊ (JJ+K)
1399
            ICDUNT=0
1400
            ICDUNFIT1
1401
            MM3=MM2+1
            mm4=3+mm2/2
            DD 350 IM=MM3:MM4
DD 340 IT=IT1:IT2
1403
1404
       DD 330 IN=1:NA
330 FUF(IN:JJ:IT) = FUF(IN:JJ:IT) + M(6)+R(IN:IM)+FFLUF(ICDUM)
1405
1406
            ICDUNFICOUN + 1
1407
1408
        340 CONTINUE
1409
            ICDUNT#1CDUNT+1TJ
1410
             ICDUN=ICDUNT+IT1
1411
        350 CONTINUE
1412
            ICOUNT=8
1413
            1CDUN=171
1414
            mm4=mm4+1
1415
            MH5=MH (6)
1416
            20 380 In=mn4+mm5
            DD 370 1T=1T1+1T2
1417
1418
       DD 360 IN=1:NM
360 FUX(IN:33:27) = FUX(IN:33:27) + M(G)+M(IN:IM)+FLUX(ICDUN)
1419
1420
            ICDUNE ICDUN+1
1421
        370 CONTINUE
1422
            ICDUNT=1CDUNT+ITJ
1423
            1CDUN=1CDUNT+1T1
1424
        380 CONTINUE
1425
        385 CONTINUE
1426
        390 IF (MAD. NE. 0) 50 TD 605
1427
1428 c
1429 C CALCULATE SCALAR FLUXES IN DETECTOR REGION
1430 c
1431
             1F(J.6T.JT) 60 TD 560
1432
            DD 550 #=1+KDZ
1433
             IF (HTD (331K).EB. 0) 60 TO 550
1434
             ITI=HELDI (JJ+K)
1435
            ITZ=HELD2(JJ+K)
1436
1437
             mm1=mm2/2
             I COUNTE U
1438
            ICDUNEIT1
            DD 520 1M=1+MH1
DD 510 1T=171+172
1439
1440
```

```
1441
            FHOH (JJ:)7) = FHOH (JJ:)7) + H(G)+FFLU> (1CDUN)
1442
            ICOUN=ICOUN+1
1443
       510 CONTINUE
1444
            ICDUNTFICDUNT+ITA
1445
            ICDUN=ICDUNT+IT1
1446
       520 CONTINUE
1447
            ICDUNT=0
1448
            ICDUNEIT1
1449
            HH1=HH2/2+1
1450
            DE 540 1M=MM1+MM2
1451
            DD 530 17=171.172
1452
            FHOH (JJ: IT) #FHOH (JJ: IT) + H (6) *FLUX (ICDUN)
1453
            ICDUN=ICDUN+1
1454
       530 CONTINUE
1455
            ICDUNT=ICDUNT+ITJ
1456
            ICDUN=1CDUNT+IT1
       540 CONTINUE
1457
1458
       550 CONTINUE
1459
       GD TD 605
560 DD 600 K=1+KDZ
1460
1461
           IF (KTD (JJ+K).ER. 0) 60 TO 600
1462
            ITI=WELDI(JJ+K)
1463
            172=KELD2 (33+K)
1464
            ICDUNT=0
1465
            ICDUN=1T1
1466
            мм3=мм2+1
1467
            mm4=34mm2/2
            DD 570 IM=MM3+MM4
1468
            DD 565 17=171+172
1469
1470
            FHDH (JJ+1T) =FHDH (JJ+1T) +H (6) +FFLUX (ICDUN)
1471
            ICDUN=ICDUN+1
      565 CONTINUE
1472
1473
            ICDUNT=ICDUNT+ITA
1474
            ICDUN=ICDUNT+IT1
1475
       570 CONTINUE
1476
          ICDUNT=0
1477
           1COUNTIT
1478
            mm4=mm4+1
1479
           HH5=HH (6)
1480
           20 590 IMEHH4+HH5
1481
            ED 580 IT=IT1.IT2
1482
            FMDH(JJ:IT)=FMDH(JJ:IT) + M(G)+FLUX(ICDUN)
1483
            ICDUN=ICDUN+1
1484
      580 CONTINUE
1485
            ICDUNTEICDUNT+ITJ
1466
            ICDUNTICOUNT+IT1
1487
       590 CONTINUE
1489 605 CENTINUE
1488
       600 CONTINUE
1491 C HRITE FLUY MOMENTS AND SCALAR FLUXES
1492 c
1493
            DD 620 J=1.JT
1494
            DD 610 K=1.KPZ
1495
            IF (HTP (J+H).EP. 0) 60 TO 610
1496
            121=HELP1 (JOK)
1497
            IZŽEKELPŽ (JOK)
1498
            HRITE (UHZ) ((FUX(INIJIIT):IN=1:NH):IT=IZ1:IZ2)
1499
       610 CONTINUE
1500
       620 CONTINUE
1501
           IF (HAD.NE. 0) ED TD 650
1502
           DD 640 J=1.JT
DD 630 K=1.KDZ
1503
1504
            IF (KTD (J+K) .EB. 0) 60 TD 630
1505
            IZI=HELDI (JPH)
1506
            JZE=MELDE (J+K)
1507
            WRITE(1) (FHOM(J:12):12=121:122)
1508
       630 CONTINUE
1509
       640 CONTINUE
1510 c
1511 C CLOSE TAPES IF NECESSERY
1512 c
1513
       650 IF (MAZ.NE. 0) 60 TO 400
1514
1515
1516
            IF (HTRP (16+6) . NE . HTRP (16+6+1) . DR . G. EB . 16H) CALL CLOSE (UN1)
            IF (KTAP (16+3+6).NE.KTAP (16+3+6+1).DR.G.ED.16H) CALL CLOSE (UNC)
            SD TD 410
1517
       400 IF (PTAP (16+6) . NE. RTAP (16+6-1) . DR. G. EB. 1) CALL CLOSE (UN1)
1518
            IF (HTAP (16+3) . HE. HTAP (16+3+6-1) . DR. 6.EB. 1) CALL CLOSE (UNC)
1519
            IF (HTAP (3:6) . NE. KTAP (3:6-1) . DR. 6.EB. 1) CALL CLOSE (UN3)
      410 CONTINUE
1520
```

```
1521
       420 FERMAT (6E12.5)
       430 FORMAT (1H +6HHRIT =+16)
15ċ2
1523
            RETURN
1524
            END
1525 c
1526 C
1527 C SUBROUTINE CHIS CALCULATES THE CHI'S
1528 c
1529
1530
1531
            SUBROUTINE CHIS (FLUx + AFFLUX + AFLUx + HTAP + CHI+ KELP1 + KELP2 + KTP + IIT +
                                HMS ISNOWAREZOJTOJTHAZOJEMO IDUTPUTO ITSUMO IGED)
1532
1533 C + + + INPUT COMMENTS + + +
             FLUX(ITJ:MPB) - ANGULAR FLUXES READ FROM UN1 (LCM)
AFFLUX(ITJ) - ADJDINT ANGULAR FLUXES+ READ FROM UN2 (LCM)
1535 c
               AFLUS (173+MPR) - PERMANGED ADJOINT ANGULAR FLUSES (LCM)
1536 c
1537 c
               KTRP (5: 16H)
                                 - DISK INDEX
                                 - PERT. ZONE K IN BAND J STARTS WITH TRI. HELP!
1538 €
               HELPI (J+K)
                                - PERT. ZONE K IN SAND J ENDS WITH TRI.KELP?
- IS PERT. ZONE H PRESENT IN SAND J? U/1 ND/YES
1539 c
               KELP2 (JIK)
1540 c
               KTP (J+K)
                                 - TOTAL " TRIANGLES IN BAND 3
1541 c
               IIT (J)
                                 - TOTAL " HOMENTS FOR GROUP 6
1542 C
               MM (E)
1543 C
               ISN (6)
                                 - ED, -DUALMATURE SET INDICATOR FOR GROUP G
1544 C
               H(6)
                                 - ED.-DUALMATURE WEIGHTS FOR GROUP 6
1545 c
               KPZ
                                 - # PERTURBED ZONES
                                 - # GROUPS
1546 C
               16H
                                 - # BANDS
1547 c
               JT.
                                 - MAX. # TRIANGLES/BAND
1548 c
               ZAMTL
                                 - TOTAL NUMBER OF TRIANGLES
1549 c
               ITSUM
1550
1551 C + + + DUTPUT COMMENTS + + + + 1552 C CH1(1GM+KPZP) - CH1'$
1553
1554
            LEVEL 2:FLUX:AFFLUX:AFLUX
1555
1556
            INTEGER 6:UN1:UN2
1557
1558
            DIMENSION FLUX (JTHAX) 1) +AFFLUX (1) +AFLUX (JTHAX) 1) +HTAP (5:1) +
1559
                       RELP1 (37:1) *RELP2 (37:1) *RTP (37:1) *11T (1) *RH (1) *
1560
                       H(1)+ISH(1)+CHI(ISH+1)+IHDLTH(23)+JPRAH(10)
1561
            DATA CP1/6.283185307/
1562
1563
            1F(1GED.EB.1) CP1=1.0
1564
1565
            MPITE (6:420)
1566
            DD 190 6=1:16m
1567 c
1568 C INITIALIZE
1569 c
1570
            DD 100 II=6:16M
1571
            1=16++6-11
1572
1573
            METTERBIT+ITSUMPER (I)
      100 IF (HTAP (3,1). NE. KTAP (3,1+1). DR. 1. EB. IGH) KRITEITSUHHHHUI)+1
1574
            NELEISN (6)/2
1575
            JJT=2+JT
1576
            MPD=MM (6) /4
1577
1578
            UNIERTAP (1:E)
            UNE=KTAP (316)
1580 C OPEN FILES IF NECESSARY
1581 c
            IF (KTAP (1:6) .NE.KTAP (1:6-1) .DR.6.EB.1) 60 TO 80
1582
            50 TD 90
1583
1564
         80 CALL ASSIGN (UN1: 0:-3)
1585
            PEAD (UN1) (INDLTH (HH) +HH=1+23)
1586
            READ (UN1) (JPRAM (KH) : HH=1:10)
         90 IF (KTAP (3+6) . NE. KTAP (3+6-1) . DR. 6. EB. 1) CALL ASSIGN (UH2+0+-3)
1587
1586 c
1589 C READ ANGULAR FLUXES DNE BAND AND DNE BUADRANT AT A TIME
1590 c
1591
1592
1593
            DO 180 J=1.JJT
            33=3
            1F(3.61.31) 33=2+31-3+1
1594
             2TJ=11T(JJ)
1595
1596
             IITJ=ITJ+HPE
            nn 170 :=1.2
1597
            KRITEMMIT-IITJ
1598
            10 95 IH=1+HP#
1599
             MEAD (UN1) IK
         95 MEAD (UN1) (FLUX (17+14)+17=1+173)
1600
```

```
CALL RDISK (UN2+AFFLUX+11TJ+KR1T)
1601
            IF (UNIT (UN2)) 96:96:96
HPITE (10:440) KRIT: UNIT (UN2)
1602
1603 C
            MRITE(8:440) KRIT
MRITE(8:450) (AFFLUX(IP):IP=1:IITJ)
1604 C
1605 c
         96 1CDUN=1
1606
1607 c
1608 C REARMANGE ADJOINT ANGULAM FLUXES
1609 C
1610
             INDEX1=1
1611
            DD 130 IJ=1+NEL
INDEX1=INDEX1+IJ=1
1612
            DD 120 M1=1:IJ
INDEX2 = IJ-H1
INDEX3 = INDEX1 + INDEX2
1613
1614
1615
            po 110 st=1.st3
1616
            AFLUX (IT, INDEX3) =AFFLUX (ICDUN)
1617
            HRITE (9:460) ICDUN: INDEXS: IT: AFLUX (IT: INDEXS):
1618 c
1619 c
           IMPFLUX (ICDUM)
1620
            1000N = 1000N + 1
       110 CONTINUE
1621
       120 CONTINUE
130 CONTINUE
1632
1623
1624 C
1625 C CALCULATE THE CHI'S
1626 c
1627 C INITIALIZE AND SKIP IF NECESSARY
1628
            DD 160 K=1+KPZ
1629
            INDEXIENCE (JJ+K)
1630
             (MIEZZ=KELPZ (JJIK)
1631
             IF(J.ED.1.AND.1.ED.1) CHI(6+K)=U.
1632
            IF (HTP (JJ:W).ER. 0) GD TD 160
1633 C CALCULATE CHI'S
1634 DD 150 IZ=INDEX1+INDEX2
            DD 140 IM=1:MPB
1635
1636
            CHI (G++) =CHI (6++)+FLUX (IZ+IH)+AFLUX (IZ+IM/+H(6)
1637 c
            WRITE (2:430) 12:1M:CHI(G:K):FLUX(12:1M):
1638 c
           IMPLUX (IZ: IM) +H(6)
       140 CONTINUE
1639
1640
1641
       160 CONTINUE
1642
        170 CONTINUE
      180 CONTINUE
1643
1644 C
1645 C CLOSE TAPES IF NECESSARY
1646 C
1647
             IF (PTAP (1:6).NE. HTAP (1:6+1).DR.G.EB. IGH) CALL CLOSE (UN1)
1648
            IF (KTAF (3:6) . NE. KTAP (3:6+1) . DR. G. ER. 16H) CALL CLOSE (UN2)
1649
       190 CONTINUE
1650 c
1651 C CALCULATE THE CHI'S FOR THE SUN DIER ALL PERTURBED ZONES
1652 C AND MULTIPLY THE CHI'S BY 2001 IN THE CASE OF R-Z GEDHETRY
1653 c
1654
            MEZBEMPZ+1
1655
            DD 210 6=1:16M
1656
            CH1 (6+#PZP)=0.
1657
            DD 200 K=1.KPZ
1658
            CHI (G+K) =CP1+CHI (G+K)
1659
            CHI (6+ KPZP) =CHI (6+ KPZP) +CHI (6+K)
1660
       200 CONTINUE
      218 CONTINUE
1661
1662 c
1663 C MRITE DUT THE CHI'S
1664 C
1665
            DO 220 K=1.KPZP
            WRITE(6:470) K
WRITE(6:410) (CMI(6:K):6=1:16H)
1666
1667
1668
       220 CONTINUE
        410 FORMAT (IM +6E12.5)
1669
        420 FORMAT (In 1/40M + + TEST PRINTOUT FOR THE CHI'S + + 4) 430 FORMAT (In 1/216:4e12.5)
1670
1671
1672
        440 FORMAT (1H +6HHRIT =+18+16)
        450 FDRHAT(6E12.5)
460 FDRHAT(1H +316+2E12.5)
470 FDRHAT(1H +6H++++ =+13+3H+++)
1673
1674
1675
1676
1677
            RETURN
             END.
1678 c
1679 c
1680 C SUBROUTINE POINT49 SETS THE APPROPRIATE POINTERS FOR THE FLUXITHE
```

```
1681 C ADJDINT FLUX AND THE PSI'S
1682 c
1683
            SUBROUTINE POINT48 (IGH: IPSI: ISUH: LMAYP: ILPNT: FP2P)
1664
1685
            INTEGER 6
           DIMENSION IPSI (MPZP+1)
1686
1687 c
1688 C + + + INPUT COMMENTS + + +
                              - NUMBER OF PERTURBED ZONES
1689 c
              KPZ
                              - NUMBER OF BANDS
1690 C
               JT
                              M NUMBER OF SHOUPS
1691 c
               IGH
                              = LCH PDINTER FROM WHICH THE PSI'S ARE TO STAPT (1)
1692 c
               ILPNT
1693 C + + + DUTPUT COMMENTS + + +
                            - LCH POINTERS FOR PSI'S
- FIRT AVAILABLE SPACE IN LCH AFTER PSI STORAGE
              1951 (K+6)
1694 C
1695 c
1696 c
               ISUM
            IPSI(1+1)=ILPNT
1697
1698
            DO 110 K-ZIKPZP
            IPSI(H:1)=ILPNT + IGH+IGH+LMAXP+(K-1)
1699
1700
1701
       110 CONTINUE
            DD 130 K=1+MPZP
1702
            DD 120 6=2:16H
            IPSI(K+6)=IPSI(K+6-1) + IGH+LMAXP
1703
       120 CONTINUE
1704
1705
1706
       130 CONTINUE
           ISUM = ILPNT + IGH*IGH*LMAXP*MPZP
1707
            RETURN
1708
           END
1709 c
1710 c
1711 C SUBROUTINE PSIS CALCULATES THE PSI'S
1712 c
1713
            SUBROUTINE PSIS (MTP: IIT: MELP1: MELP2: IPSI: FFLU: : FAFLUX:
1714
                               PSI:PPSI:NM:JT:PZ:PPZP:IGM:LMAXP:
1715
                               HTAP+CHI+IDPT+IPPEP+ICHIMDM+IGED)
FFLUX(I)
                         - FLUX MOMENTS FOR A PARTICULAR GROUP (LCM)
- ADJOINT FLUX MOMENTS FOR A PARTICULAR GROUP (LCM)
1719 c
             FAFLUX(1)
1720 c
             227(3)
                          - # TRIANGLES IN BAND J
             KTP (JIH)
                          - IS PERT. ZONE & PRESENT IN BAND J? U/1 ND/YES
1721 c
1722 c
             KELP1 (J+K) - PERT, ZDNE K IN BAND J STARTS WITH TRI. HELP1
1723 c
             MELPE (Joh) - PERT, ZONE W IN BAND J ENDS WITH TRIANGLE KELPE
                          - LCM PDINTER FOR THE PSI'S LPERT. ZDME (+640UP G)
- DISK IDENTIFIERS FOR THE FLUX HOMENTS FOR GROUP G
- DISK IDENTIFIERS FOR THE ADJOINT MOMENTS FOR GROUP G
1724 c
             IPSI(HIS)
1725 c
             KT00 (4.6)
             KTAP (5:6)
1726 c
1727 c
                          - IF .GE. 1 CHI'S WILL BE CALCULATED FROM FLUE HOMENTS
             ICHIMOM
1728 c
                          - D/1 CALCULATE PSI S/READ PREPARED PSI'S FROM TAPES
1729 c
             IDPT
                          - IF .GE. 2 PRINT DUT PSI'S
1730 c
1731 C + + + DUTPUT COMMENTS
1732 c
                          - PSI'S IN LCM
1732 C PPS1 - PS1'S IN LCM
1733 C . CH1(6+K) - CH1'S IF ICHIMDM .6E. 1
1734
1735
            LEVEL 2:LC:FFLUX:FAFLUX
1736
            CDMHDM /LLC/ LC(40000)
1737
            INTEGER EIGEPIEPIUNTIUNZ
1738
1739
            DIMENSION HTP (JT+1)+11T (1)+KELP1 (JT+1)+KELP2 (JT+1)+
1740
                       FFLUY(1) + FAFLUY(1) + 1PS1(KPZP+1) +
1741
                       PSI (IGHILMAXPI) : PPSI (IGHI 1) : KTAP (5:1) : CHI (IGHI 1)
1742
1743
            DATA CP1/6.283185307/
1744
1745
            rf (resp. sp. 1) cpr=1.0
1746
            IF (IDPT.6E.2) MRITE (6:400)
1747 C INITIALIZE PSI'S
1748
            DD 320 6=1:16H
1749
            IF (IPMEP.NE. 0) 60 TD 251
1750
            DD 140 SP=1:16H
1751
            DO 130 LEI+LHAXP
1752
            DO 120 KELIKPZP
1753
            PS: (GP+L+K)=0.
1754
       120 CENTINUE
1755
       130 CONTINUE
       140 CONTINUE
1757 C DPEN TAPE IF NECESSARY
          UN1=HTAP (4+6)
1758
            3F(HTAP(4+6).HE.HTAP(4+6-1).DR.6.E8.1) CALL ASSIGN(UN1+0+3)
1759
1760 C READ THE FLUX HOMENTS
```

```
1761
            3CDUN1 = 1
1762
            DO 150 J=1.JY
1763
1764
            DD 145 ME11MPZ
            TE (MTP (JIN) . ER. ()) ED TD 145
1765
            ICDUNETICOUNT + (HELPE (JIH)-HELPT (JIH)+1)+HH - 1
1766
            READ (UN1) (FELUX (ICOUN) + ICOUN=ICOUN1 + ICOUN2)
            MRITE (8:420) (FFLUX (ICDUN) + ICDUN=ICDUNI+ICDUNE)
1767 c
1768
            ICDUN1#ICDUN2 + 1
        145 CONTINUE
1769
1770
        150 CONTINUE
1771
            DD 220 GGP#6,16M
1772
            GP=16H-66P+6
1773 C DPEN FILE IF NECESSORY
1774
           UNZERTAP (516P)
            IF (HTAP (5+GP) .NE. HTAP (5+GP+1) .DR. GP. EB. IGM) CALL ASSIGN (UN2+0+3)
1776 C READ THE ADJOINT FLUX HOHENTS
           ICDUN1 = 1
1777
1778
            DD 160 J=1.JT
            DD 155 K=1+KPZ
1779
            IF (HTP (JIK) .EB. 0) 60 TO 155
1780
            ICDUNE = ICDUN1 + (KELPE(J+H)-KELP1(J+K)+1)+NH - 1
1781
            MEAD (UNE) (FAFLUX (ICDUN) + ICDUN#1CDUN1+ ICDUN2)
1782
1783 c
            HRITE (8:420) (FAFLUX (ICDUN/: ICDUN#ICDUN1: ICDUN2)
            ICDUN1 = ICDUN2 + 1
1784
       155 CONTINUE
1785
1786
        160 CONTINUE
1787 C CLOSE FILE IF NECESSARY
1788
            IF (KTAP (5:6P) . NE. KTAP (5:6P-1) . DR. GP. ER. G) CALL CLOSE (UN2)
1789 C CALCULATE THE PSI'S
1790
            INDEX1=1
            DD 210 J=1.J7
DD 200 K=1.KPZ
1791
1792
1793
            1F (HTP (J+H) .EB. 0) 60 TD 200
1794
            ITHEHELP2 (Joh)-HELP1 (Jok)+1
1795
            DD 190 12=1:17#
            DD 180 L=1.LMAXP
1796
1797
            WRITE (7:444) PSI (GP+L+K)+FFLUX (INDEX1)+FAFLUX (INDEX1)+L+GP+
1798 c
1799 c
           IKI IZI INDEXI
1800
            PSI(GP+L+K)=PSI(GP+L+K)+FFLUX(INDEx1)+FAFLUX(INDEX1)
1801
            INDEXISINDEXI+1
       170 CONTINUE
1802
1803
        180 CONTINUE
1804
        190 CONTINUE
1605
        200 CONTINUE
1606
        210 CONTINUE
1807
        220 CONTINUE
1808 C CALCULATE THE PSI'S FOR THE SUM DUER ALL PERTURBED ZONES
1809 C AND MULTIPLY BY 24P1 1F P-Z GEDHETRY
1610
           DO 250 L=1+LHAYP
1811
            DD 240 GP=6,16H
            DD 230 KELIKEZ
1812
1613
            PSI(GPILIK)=CPI+PSI(GPILIK)
1814
            PSI (GP+L+HPZP) =PSI (GP+L+HPZP) +PSI (GP+L+K)
1615
        230 CONTINUE
1816
        240 CONTINUE
1817
        250 CONTINUE
1818 C READ THE PSI'S FROM PREVIOUSLY PREPARED TAPES
        251 IF (IPPEP.EB. 0) GD TD 254
1819
1820
            DD 253 K=1+KPZP
            DD 252 GPEGISH
MEND(3:410) IN1:IN2:IN3
MEND(3:420) (PSI(GP:L:K):L=1:LMAXP)
1821
1822
1823
       252 CONTINUE
1624
1825
       253 CONTINUE
1826 C CALCULATE CHI'S FROM FLUX HOMENTS IF CHINDM EN 1 1827 254 IF (ICHINDM.LT.1) SD TD 259
1628
           DO 255 K=1.KPZP
        255 CHI (6+K)=0.0
1829
1630
            DD 256 LEILLHAMP
1831
            DD 256 K=1+KPZP
        256 CHI (GIK) =CHI (GIK) +PSI (GILIK) + (C+L-1)
1832
1833 C MAITE PSI'S IF DESIMED
1634
        259 IF (IPMEP.ED. 1. MND. IDPT.LT.2) 60 TD 280
1635
            DD 270 HE1-HPZP
1836
            ID 260 6P=6:16M
1637
            IF (IPREP.EE. 0) WRITE (3:410) 6:6P:H
IF (IPREP.EE. 0) WRITE (3:420) (PSI (GP:L:H):L=1:LMAXP)
1838
1839
            IF (IDPT.6E.2) MRITE (6:410) STEPH
IF (IDPT.6E.2) MRITE (6:420) (PSI(SPILIN) PLEITLIMAXE)
1840
```

```
260 CONTINUE
1841
1842
       270 CONTINUE
1843 C PUT PSI'S IN REPROPRIATE PLACE IN LCM
1844 280 DD 310 K=1+MPZP
1644
            DD 300 L=1.LMAXP
DD 290 GP=1.16M
1645
1846
1847
            PPSI(GP+L)=PSI(GP+L+K)
      290 CONTINUE
1848
1849
       300 CONTINUE
            CALL ECHR (PPSI+IPSI (K+6)+IGHOLHAXP)
1850
1851
       310 CONTINUE
1852 C CLOSE FILE IF NECESSARY
            IF (IPREP. HE. 0) 60 TO 320
1653
            IF (HTAP (4:6).NE.HTAP (4:6+1).DR.G.EB.IGM) CALL CLOSE (UN1)
1854
1655
      320 CONTINUE
1856 C WRITE CHI'S IF CALC. FROM MOMENTS AND LIST DESIRED
1857 IF (ICHIMOM.LT.1) GD TD 340
1857
            MRITE (6:450)
1858
1859
            HRITE (6:440)
1860
            DD 330 K=1+KPZP
1861
            HRITE (6:460) K
      330 HRITE (6:430) (CHI (6:K):6=1:16H)
340 CONTINUE
1862
1863
1864 C READ THE PSI'S IF PREPARED
           IF (IPPEP.NE.1) GD TD 345
1865
            DD 344 K=1+KPZP
1866
            READ (3:420) (CHI (6:4)+6=1:16H)
1867
1668
      344 CONTINUE
1869 C MRITE OUT THE CHI'S
            DD 350 K=1+KPZP
1870
       345 IF (IPREP. NE. 0) 60 TD 355
1871
            MBITE (3:420) (CHI (6):6=1:16H)
1872
1873
       350 CONTINUE
1874
       355 CONTINUE
       400 FORMAT (IM 1/140H + + + TES' PRINTOUT FOR THE PSI'S + + +)
1675
        410 FORMAT (1H +3H6 =+13+5H 6P =+13+4H H =+13)
1676
1877
        420 FORMAT (IN +6E12.5)
1678
        430 FORMAT (1H +6E12.5)
        440 FORMAT (IH +40H + + TEST PRINTEUT FOR THE CHI'S + + +)
1879
       1880
1881
1862
1883
            RETURN
1864
            END
1885 c
1886 C SUBROUTINE POINTS SETS THE LCH POINTER FOR THE PSI'S CORRESPONDING
1687 C WITH PERTURBED ZONE HY AND PUTS THE APPROPRIATE CHI'S IN VECTOR CCHI
1868 c
1889
            SUBROUTINE POINTS (IPSI: K: IPPSI: KPZP: IGH: CHI: CCHI)
1890 c
1891 C + + + INPUT COMMENTS + + +
                IPSI(H:1) - LCM PDINTER FOR THE PSI'S FOR PERTURSED ZOME K
CHI(6:K) - CHI'S FOR GROUP G AND PERTURSED ZOME K
R - PERTURSED ZOME IDENTIFIER
1892 c
1893 c
1894 c
1895 c
                           - D PERTURSED ZONES
                KPZ
                           - IDENTIFIER FOR SUM DUER ALL PERTURBED ZONES
1896 c
                KPZP
1897 c
                           - # 680095
                1 GH
1898 c
1899 C + + + DUTPUT COMMENTS + + +
                           - LCM POINTER FOR THE PSI'S FOR PERTURBED ZONE &
- CHI FACTOR FOR GROUP 6 AND PERTURBED ZONE &
1900 c
               IPPSI
1901 c
                CCHI(6)
1902
1903
            DIMENSION IPSI (KPZP+1)+CHI (16H+1)+CCH1 (1)
1904
1905
            INTEGER 6
1906
1907
            IF (K.NE. 0) 60 TD 120
            IPPS: = IPS:(MPZP:1) + 1
HRITE(2:410) IPPS::H
1908
1909 c
1910
            DD 110 6#1+16H
CCH1(6) = CH1(6+HPZP)
1911
1912
       110 CONTINUE
1913
            60 TO 140
       120 IPPS: = IPS:(H:1) + 1
HRITE(2:410) IPPS::H
1914
1915 c
            DD 130 6=1:16H
CCH1(6) = CH1(6:H)
1916
1917
       130 CONTINUE
1918
      410 FDHHH.
140 RETURN
        410 FORMAT (IH +6H IPPSI+216)
1920
```

```
1921
            END
1922 €
1923 c
1924 €
1925 c
1926 c
            SUBROUTINE SUB5 (XH2+NCG+NCTL+NHL+ILHAX+IXSTAPE+XTITLE+XN1)
1927
          HARDLDS ANISH ASECTION ROUTINE; SIMPLIFIED TO MERD ANISH CHOSE SECT
1928 €
          TABLES FOR DALY 1 ISDTOPE OR HIX AT A TIME! BUT ALL P-L COMPONENTS
LEVEL 2: XN2:XN1
1929 €
1930
1931
            DIMENSION AND (NCG+NCTL+1)+XN1 (NHL+1)+
1932
                       IN (6) + KH (6) + U (6) + H (12) + HAME 1 (10) + TITLE (20)
1933
           ٠
                        FITITLE (11) FTITLEX (20)
1934
            EPUTUALENCE (TELANHIERELANK)
1935
            COMMON/ITE/ITEST:ITYP
1936
            COMMON/COVARI/ JCDVAR
1937
            COMMON-XSFORM-KXS+1HT+1HA
1938
            COMMON/DENS/ NUMBER
                     NUMBEN
            REAL
1939
1940
            INTEGER
                          PLCDMP
1941
            DATA BOODHL/4HGRP./133LANH/4H
1942
            N5=5
1943
            M6=6
1944
            GPPE BOODHL
            NC = 0
NC1 = 0
1945
1946
            NT1 = 32767
1947
            LLMAY = ILMAY + 1
1948
1949
            IF (INSTAPE.ER. 1. AND. KKS.ER. 1) GO TO 500
1950
            IF (KXS.ED.2) GD TD 40
1951 c
1952 c +++ mead Last-Format cross sections from input file (or cards)
1953
         1 CONTINUE
         RERD(N5)2) (TITLE(I)+I=1+2U)
2 FDRHAT(20A4)
1954
1955
          READ (N5:3) NUMBENIJODVAR
3 FORMAT(12x:E12.6:11x:11)
1956
1957
            M#1TE (6:303)
1958
1959
        303 FURMAT (IH ++ MICRO CROSS-SECTIONS AND NUMBER DEMSITY READ IN LASL-
           *FORMAT WITH FOLL. TITLE CARD *>
WRITE(6:4) (TITLE(I):1=1:20)
1960
1961
1962
          4 FERMAT (1H +20A4)
1963
            HEITE (6:5) NUMBER
1964
1965
          5 FORMAT (IN 10 NUMBER DENSITY #0:FY.6:0 ) MAKES THE FOLLOWING MARROT
           +CHOSS SECTIONS: IN 1/CH+/)
1966
          6 DD 900 LL=1+LLMA>
            READ (N5+2) (TITLEX(I)+I=1+20)
HRITE(6+4) (TITLEX(I)+I=1+20)
READ(N5+301) ((XN2(I+J+LL)+J=1+NCTL)+I=1+NC6)
1967
1968
1969
1970
        301 FORMAT (6g12.5)
        10 DD 300 I=1:NC6
DD 300 J=1:NCTL
1971
1972
1973
            KHE(I) SAX+HEDMUM = (115:LL)
1974
1975
        300 CONTINUE
            IF (ITEST.ED. 1) 60 TO 304
1976
            HRITE (6,305)
        305 FORMAT(IM + +xs PRINTED DNLY MMEN ITEST=1+ DMITTED FOR THIS CASE+)
GD TD 910
1977
1978
        304 MRITE(6:302) ((xN2(1:3:LL):J=1:NCTL):I=1:NC6)
1979
1980
        302 FORMAT (14 +6(2x+19E12.5))
1981
        910 CONTINUE
1982
        900 CENTINUE
1983
        999 RETURN
1984 c
       500 CONTINUE
1985
1986 REHIND 4
1987 COOR READ HICHOSCOPIC CROSS SECTIONS FROM LASE CARD IMAGE TAPE
1988 C++++ PROGRAM DETERMINES NUMBER OF RECORDS PER ISUTOPE
1989
            HI= (NCG+NCTL)/6
            IF HI IS NOT A MULTIPLE OF 61 THEN ADD I MORE RECORD IF ((6+H1).NE. (NCS+NCTL)) MI=H1+1
1990 €
1991
1992 €
            ALD DHE FOR TITLE RECORD
1993
            m2=m1+1
1994 €
            MULTIPLY WITH NUMBER OF PL-COMPONENTS PER ISUTOPE
            MENDING:5000) ID: NUMBEN: XSNAME
1995
1996
1997 5000 FORMAT (16:6x:e12.5:2x:e10)
1998 C+++ PROGRAM DETERMINES THE NUMBER OF RECORDS TO BE SKIPPED
1999
            15CIP# (15-1) +HE
2000 =+
            IF READING FIRST MATERIAL ON TAPE SKIP ZEAD RECORDS
```

```
2001
             IF (ID.EB.1) 60 TO 5007
        DE 510 I=1:ISCIP
510 PEAD(4:5001) (TITLEX(N):N=1:20)
2002
5003
2004
      5007 CENTINUE
2005
             DO 502 LL=1+LLMAX
            PEAD TITLE OF MATERIAL OR PTL COMPONENT DESIRED FROM TAPE PEAD (4:5001) (TITLEX(1):121:20)
2006 C++
2007
      5001 FDPHAT (20A4)
2008
2009
            HRITE (N6+5002) (TITLEX(I) + I=1+2U)
2010 5002 FORMAT(IM +1x+20A4)
2011 MRITE(N6+5003) NUMBEN+XSNAME
2012
      5003 FORMAT (IM + 1x+ ONUMBER DENSITY=++ 1PE12.5+2x+A10)
2013 c++
           PERD CROSS SECTIONS OF NATERIAL DESIRED
READ (4.5004) ((XN2(1.3.LL)):3=1.NCTL):1=1.NCG)
2014
       5004 FORMAT (6E12.5)
2016 C++
            IF ITEST FLAGEO DO NOT PRINT HICADX'S
             IF (ITEST.NE.1) 60 TO 507
2017
2018
            L=LL-1
            HRITE (6,5005)L
2019
2020
      5005 FORMAT (IM + 1x++TEST PRINDUT FOR MICROSCOPIC CROSS SECTIONS FOR L
2021
           1=++13)
        HRITE(6:509)((xN2(1:3:LL):3=1:NCTL):1=1:NC6)
509 FORMAT(IN:6(2x:1PE12.5))
2022
2023
        MAKE THE MACROSCOPIC CROSS SECTIONS
507.DD 505 I=1:NCS
DD 505 J=1:NCTL
2024 c++
2025 5
2026
2027
        505 XN2 (1131LL) = NUMBEN+XN2 (1131LL)
2028
       502 CONTINUE
2029
             60 TD 499
2030 c
2031 C +++ READ LIMITED-FIDD FORMAT XS
2032 c
2033
         40 DD 9999 LN=1+LLMAX
2034
         50 IF (NC) 121+121+31
2035
        121 PEAD (N5.11) NCC: PLCDMP: NAME!
         11 FDRHAT (216:1044)
2036
            NCID = PLCOMP + 1
2037
             HCI= HCID
2038
2039
            1F (NCC) 22:22:21
2040
         21 IF (NCC-2)24,22,24
2041
         22 J=0
2042
            NCDUNTSHC69NCTL
        622 READ (N5:8) (IN(I)+H(I)+V(I)+I=1+6)+(H(I)+I=1+12)
6 FORMAT(6(I2+A1+F9.0)+T1+6(4x+gA4))
2643
2044
2045
             ED 635 1=1.6
2046
             IF (KK (2)-IBLAMM) 700+810+700
2047 c
             NO REPEATS
       810 IF (W(Zez-1).EB.XBLANK .AND. M(Zez).EB.XBLANK)60 TD 800
2048
2049
             3=3+1
2050
             XN1 (3+LN/=V(I)
2051
             GD TD 800
2052 c
             REPERT
        700 L=IH(I)
2053
2054
            DE 809 H=1+L
2055
             J=J+1
        809 ×N1 (J+LH)=V(1)
2056
2057
        800 IF (J-NCDUNT) 635:24:24
2058
        635 CENTINUE
2059
             €D TD 622
         24 NC=1
2060
2061
            1F (NCC-7) 31+25+31
2062
         25 NC1=32767
2063
             1F (NC1-NT1) 31+26+31
2064
         26 RETURN
2065
         31 IF (NT1-NC1) 43+41+43
2066
         43 NC=D
2067
             er = 0
2068
             DD 120 1=1+NC6
2069
             DD 120 J=1.NCTL
2070
             KEH+1
2071
        120 PH2 (1+3+LH) = PH1 (K+LH)
2072
             IF (ITEST. NE. 1) 60TD 51
2073
             HRITE (N6, 201) NCG+NCTL+NCC+NCID+LN+NAME1
2074
        201 FORMAT ( 5H1NOG*13,3x; SHT.LENGTH=13:3x; 5HCDNTMOL*13:3x; 19HNC1D=AN
            +15H-HAT.NO.=14+3x+13HL-DRDER=PL+1=12+3x+10A4)
2076
         51 NH1=1
2077
             MYZEB
2078
             TEST# PLDAT (NC6) /8.0 4.999
2079
             LMAFETEST
PORD
             DD 145 L=1+LMAX
```

```
IF (NN2-NC6) 232+232+233
2081
        233 MH2= MC6
2082
        232 IF (ITEST. NE. 1) GOTO 49
2083
2084
             HRITE (NO: 245) (GRP: J: J=HN1: NHE)
        245 FORHAT (7H-PDS HT+8 (6x+84+13))
2085
2086
            DO 241 I=1+NCTL
2087
        241 MRITE (N6:202) IFLN: (XN2 (JFIFLN) FJENNI+NN2)
        202 FORMAT (2:4:198E13.5)
2088
2089
          49 NN1= NN2+1
2090
        145 MN2=NN1+7
2091
             IF (ITEST.NE.1) GOTD 9999
         HRITE (N6:75)
75 FORMAT (140)
2092
2093
2094
      9999 CONTINUE
       41 60 TD 50
2095
2096 c
2097 499 METURN
             END
2098
2099 c
2100 c
2101 c
2102 c
2103 c
2104
             SUBROUTINE SUB6 (DSTIDSLIXSIXSDARITONITLIAXSISXSIDSLEDISXSNG)
2105
2105 + NCDUPLIFISXSIDES)
2106 C +++ CALCULATES DST-+ DSL- AND ANS-ARRAYS! AND DSLFD-ARRAY
2107
            LEVEL 2: DSLIYSIYSBARIDSLED
2108
             DIMENSION MXS (1) + SXS (1) + DSLFD (16H+ 16H+ 1) + FISXS (1)
             DIMENSION DSL (IGH: IGH: 1):DST (1):XS (IGH: ITL: 1):XSBAR (IGH: ITL: 1)
2109
2110
             DIMENSION SYSNE(1)
2111
             CDMMDN/ITE/ITEST: ITYP
2112
             COMMON/VAS/LL
2113
             COMMON/DENS/ NUMBER
2114
             COMMON/XSFORM/KXS+INT+IMA
2115
             REAL NUMBER
2116
             INTEGER 6: 6P
             DO 1 6PE1:16M
2117
2118
2119
             DO 1 L=1.LL
             DSLFD(6:6+:L)=0.0
2120
          1 DSL (6:6P:L)=0.0
2121
2122 C *** CALCULATE DELTA SIGNAS DET AND DEL
            DD 40 6=1:16H
DST(6) = XS(6:1HT:1)
2123
2124
           # IF((ITYP.EB.1).AND.(IDES.EB.0))
# DST(6) # XS(G:INT:1) - XSDAR(G:INT:1)
# IF((ITYP.EB.1).AND.(IDES.EB.1))
2125
2126
2127
2128
            + psr(6) = 0.01+xs(6:1HT:1)
2129
             AXS(G) = XS(G: 1HA: 1)
2130
             FISKS (6) =>S (6: 1HA+1:1)
2131
            DD 40 6P=1+6
             DD 40 L =1+LL
2132
2133
             ESL (G+1-GP+G+L) = XS(G+GP+IHT+L)
2134
             IF ((ITYP.ER.1). AND, (IDES.ER, U))
2135
            + DSL(6+1-GP+6+L) = XS(6+6P+1HT+L) - XSBAR(6+6P+1HT+L)
            IF ((ITYP.ED.1).AND. (IDES.EB.1))
2136
2137
              DSL(G+1-6P+6+L) = 0.01+xs(6+6P+1HT+L)
2138
         40 CONTINUE
2139 C *** NOW THE DEC-MARKY IS CONVENIENTLY DRIVENED FOR THE AD-FORMULATION!
2140 C +++ DSL(GP:6:L) CAN DIRECTLY BE INTERPRETED AS SCATTERING FROM GROUP 2141 C +++ GP INTO GROUP 6: ORDERED SO THAT 6P STARYS WITH 1 AND INCREASES
2142 C +++ TO SPES! THE MEST AME ZEROS.
2143 c
2144 C *** CALCULATE DSLFD FOR FD-FDRHULATION
2145
            DD 30 6=1:164
DD 30 6P=6:164
2146
2147
             ##IHT+6P-6+1
2148
            DD 30 L=1.LL
2149
             DSLFD(6:6P+L) = XS(6P+K+L)
            IF((ITYP.ER.1).AND.(IDES.ER.U))

DSLFD(GIGPIL) = XS(GPINIL) = XSBAR(GPINIL)
2150
2151
            IF ((ITYP.EB.1).AND. (IDES.EB.1))
2153
                DSLFD(G:GP:L) = 0.01*x5(GP:K:L)
2154 30 CONTINUE
2155 C +++ NON THE DEL-ARRAY IS CONVENIENTLY DRIVENED FOR THE FD-FORMULATION
2157 C *** CALCULATE TOTAL MACROSCOPIC SCATTERING CROSS SECTION PER GROUP
2158 IF(TYP.EB.1) 60 TO 203
             DD 60 I=1.164
Sxs(I) = 0.0
2160
```

```
2161
           DD 50 6=1:16H
           GP = IHT+6-1+1
2162
         50 sxs(1) = sxs(1) + xs(6+6++1)
2163
2164
         68 CONTINUE
            1F (NCDUPL.ED. 8) 60 TO 202
2165
2166 C +++ CORRECT DIAGONAL SUMS FOR NEUTRON-SXS BY SUBTRACTION OF SYSNE
           DD 204 6=1:16M
2167
2168
       204 SESNE (6) =0.0
            NG1=NCDUPL+1
2169
            DD 200 6=1+NCOUPL
2170
            DD 201 6P=N61+16H
2172
            I=IHT+6P-6+1
       201 SENE (6) = SENE (6) +xs (60+1+1)
2173
2174
2175
            SXS (G) #SXS (6) -SXSNG (6)
       200 CONTINUE
       202 IF (ITEST.NE.1) 60 TO 26
2176
            HRITE (6:1050)
2177
      1050 FORMAT (IN + TEST PRINT-DUT FOR TOTAL MACADSCOPIC SCATTERING CROSS-
2178
2179
           SECTION PER GROUP: IN 1/CH4/)
2180
            DD 70 6=1:16M
      DD 10 0-17100

HRITE (6:1051) 6:5xs(6)

1051 FDRHAT(1H :+6 =+:13:+ 5xs-HACRD = +:1PE12:5:+ 1/CH+)
2181
2162
2183
         70 CONTINUE
2184
            HRITE (6:1052)
2185
      1052 FORMAT (14 14TEST PRINTOUT FOR TOTAL GAMMA PRODUCTION XS PER NEUTRO
2186
           +H GROUP+)
      DD 71 6=1:NCDUPL

HRITE (6:1053) 6:5x5N6(6)

1053 FDRHAT(1H:+6 =+:13:+ 5x5N6-HACRD = +:1PE12.5:+ 1/CH+)
2187
2188
2189
2190
         71 CONTINUE
       203 IF (ITEST.NE.1) 60 TO 26
2191
2192 C +++ TEST PRINTOUT OF DELTA SIGNAS
٤193
            HPITE (6,7004)
2194
      7004 FORMAT (IN 19TEST PROBLEM VALUES FOR DST (6)4/)
2195
            HRITE (6:1042) (DST(6):6=1:16H)
2196
      1042 FORMAT (IN +9 (2x+1PE12.5))
IF (16H.6T.9) 60 TO 805
2197
2198
            DD 41 L=1:LL
            WEITE (6:1040) L
2199
2200 1040 FORMAT (IN 14TEST PRINTOUT FOR DSL (616P)L) FOR LEGIS//)
            DD 41 6 =1.16H
2201
2202
            HPITE (6:1016) 6
2203
     1016 FORMAT (1H + + WHEN 6=++13 )
         41 HRITE(6:1042) (DSL(G:60:L):60=1:16H)
2204
2205
       805 CONTINUE
            IF (NCDUPL.ES. 0) 60 TO 26
2206
2207
            DD 800 L=1.LL
            WRITE (6:801) L
2208
2209
       BUT FORMAT (IM + STEST PRINTDUT FOR N-GAMMA MATRIX DSLFNG (6:69:L) FOR LE
2210
           ++,13 )
2211
            HPITE (6:807)
       807 FDRMAT([M +7x+6c-c=10+5x+6c-c=20+5x+6c-c=30+5x+6c-c=40+5x+6c-c=50+65x+6c-c=60+5x+6c-c=50+5x+6c-c=50+5x+6c-c=100-)
2212
2213
2214
            DD 810 G=1+NCDUPL
2215
        810 MRITE (6:1062) 6: (DELFD (6:6P:L):6PENG1:18M)
2216
      1062 FORMAT (IM + ON-G=++12+12(1x+1PEY.2))
2217
        BUU CONTINUE
2218
            HPITE (6+803)
       803 FORMAT (IN 19TEST PRINTOUT FOR TOTAL N-SAMMA MACROSCOPIC CROSS 

**SECTION PER NEUTRON SAGUP: IN 1/CH**)
2219
5550
2221
            20 802 6=1 NCDUPL
2222
        802 HPITE (6,804) 6,5x5N6 (6)
2223
       604 FORMAT (1M ++6=+,13++ sxsNG-MACRO=+,1PE12.5+1x++1/CM+)
2224
         26 RETURN
2225
            END
2226 c
2227 c
2228 c
2229 c
2230 c
2231
            SUPPOUTINE TEXT
2232 C +++ THIS ROUTINE PRINTS A LIST OF DEFINITIONS FOR XS-PROFILES
2233 c
           EDITED IN SUBB
            MPITE (6:801)
2234
2235
       BUI FORMAT (1H +11x+B7 (+-+)+/)
2236
           HPITE (6+802)
       802 FORMAT (IM + 26x++DEFINITIONS OF SENSIT SENSITIVITY PROFILE NOMENCLA
2237
2236
           ITURE + >
2239
            MRITE (6+805)
      805 FORMAT (1H +11x+87(+-+)+/)
2240
```

```
2241
           MRITE (6+803)
2242
       803 FORMAT (IN + MAXS
                                     * SENSITIVITY PROFILE PER DELTA-U FOR+
2243
                  4 THE ABSORPTION CROSS-SECTION (TAHEN FROM POSITION+)/
            15x++ IMA IN INPUT CROSS-SECTION TABLES)+ PURE LOSS TERM ++//
2244
2245
                                E SENSITIVITY PROFILE PER DELTA-LI FOR THESE
                  . MITE 155
                  + CROSS SECTION IN POSITION IMA+1 IN IMPUT XS-TABLES: 4/2
2246
2247
            15>: HHICH IS USUALLY NUTTIMES THE FISSION CROSS SECTION. 4:
               + PURE LOSS TERM++//

SXS = PAR
2248
2249
                                - PARTIAL SENSITIVITY PROFILE PER DELTA-UD.
                 . FOR THE SCRITERING CROSS-SECTION (COMPUTED FOR EACHOR)
2250
2251
          9 15x: * ENERGY GROUP AS A DIRGONAL SUM FROM INPUT XS-TABLES) . . .
2252
                  + LOSS TERM DNLY+1// >
2253
           MPITE (6:604)
2254
       804 FORMAT (IH + TXS
                                     F SENSITIVITY PROFILE PER DELTA-U FORM.
          1 • THE TOTAL CROSS SECTION (AS GIVEN IN POSITION INT IN++/2 15x++ INPUT CROSS-SECTION TABLES)+ PUPE LOSS TERM++//
2255
          1
2256
                + N-GRIN
2257
                                 - PARTIAL SENSITIVITY PROFILE PER DELTA-U++
2258
                  + FOR THE NEUTRON SCATTERING CROSS-SECTION. GAIN TERM FOR+1/
2259
            15x++ SENSITIVITY GAINS DUE TO SCATTERING DUT OF ENERGY++
2260
                  + GPDUP G INTO ALL LOHER NEUTRON+1/
            15x1+ ENERGY GROUPS: COMPUTED FROM FORMARD DIFFERENCE+:
2261
                + FORHULATION: 4://
2262
                                 - PARTIAL SENSITIVITY PROFILE PER DELTA-U+;
2263
                  + G-GAIN
                  . FOR THE GAMMA SCATTERING CROSS-SECTION. GAIN TERMS!
2264
             15x1+ FOR SENSITIVITY GAINS DUE TO SCATTERING DUT DE GANHA+1
2265
2266
                  + ENERGY GROUP & INTO ALL LOWER GAMMA EMERGY GROUPS: +/
2267
            15x1+ COMPUTED FROM FORWARD DIFFERENCE FORMULATION.+1//
               + N-GAIN(SED) = RE-DRIERED PARTIAL SENSITIVITY PROFILES:
2268
2269
                  + PER DELTA-U FOR SCATTERING CROSS-SECTION. GAIN TERM FOR+!/
2270
            15x++ SENSITIVITY GAINS DUE TO SCATTERING INTO GROUP & FROM++
2271
                  + ALL HIGHER NEUTRON ENERGY GROUPS!
2272
          C 15x1+ COMPUTED FROM ADJOINT DIFFERNCE FORHULATION. 41/
          D 1514 CORRESPONDS TO SINGLE-DIFFERENTIAL SED SENSITIVITY*:

### PROFILE: PSEDIG-DUT) PER DELU-DUT: ***/
2273
2274
             15x++ INTEGRATED DUER ALL INCIDENT ENERGY GROUPS.++// >
2275
2276
           MRITE (6:806)
2277
       806 FORMAT (IN ++NG-GAIN
                                    - PARTIAL SENSITIVITY PROFILE PERF
                 + DELTA-U FOR THE GAMMA PRODUCTION CROSS-SECTION+1/
2278
          2 15x10 AT NEUTRON ENERGY GROUP G. PURE GAIN TERM FOR0.
3 0 SENSITIVITY GAINS DUE TO TRANSFER FROM NEUTRONO!
2279
2280
          X 15x++ GROUP & INTO ALL GAMMA GROUPS.++//
2281
                                 - NET SENSITIVITY PROFILE PER DELTA-U FOR+
2282
                  + SEN
                  + THE SCRTTERING CROSS-SECTION (SENESXS+NGAIN)++//
2283
                  - SENT
2284
                                 MET SENSITIVITY PROFILE PER DELTA-U FORFI
2285
                 + THE TOTAL CROSS-SECTION (SENTETES+HGAIN)+1//
                  + SENR = SENSITIVITY PROFILE PER DELTR-U FOR THE+;
+ DETECTOR RESPONSE FUNCTION R(6) ++//
                 - SENR
2286
2287
                                = SENSITIVITY PROFILE PER DELTA-U FOR THE+
2288
2289
                  # SDURCE DISTRIBUTION FUNCTION B(6) #1// )
2290
           HETTE (6:805)
2291
           HRITE (6:805)
2292
           RETURN
2293
           END
2294 c
2295 c
2296 c
2298 c
2299
           SUBBOUTINE TEXTS
2300 C +++ THIS ROUTINE PRINTS A LIST OF DEFINITIONS FOR TERMS EDITED IN
2301 c
           DESIGN SENSITIVITY MODE FROM SUBS
           HRITE (6,101)
2302
2303
       101 FDFHAT (1H1)
2304
           HPITE (6:100)
2305
       100 FDEMAT (IN +10x+90(IN+)+/ )
           MRITE (6+110)
2306
       110 FORMAT (1m , 30x, operinitions FOR SENSIT-1D DESIGN SENSITIVITY **
2307
2308
          1
                 *PRINTOUT * )
2309
           MRITE (6:100)
2310
            MPITE (6:120)
       120 FORMAT (IN : 1x; OFDR THEORY AND DETAILED DERIVATIONS OF THESE OF
2311
                  PEXPRESSIONS REFER TO P: 7: EX:

+(1) S:R.H. SERSTL AND N.H. STACEY JR.: NUCLEAR SCIENCE P:
2312
2313
                  The engineering, 51, 337(1973) \Phi , 7, 2x, \Phi(2) s.a.m. Gerstl, argume national lab. Technical members
2314
2315
                  2316
           5
           WRITE (6:130)
2317
2318
       130 FORMAT (IM . 2x . DUE TO THE DUBLISH OF FORMAD AND ADDINT ...
2319
                  SEDEMULATIONS FOR RADIATION TRANSPORT CALCULATIONS OF
2320
                  THE HAVE ALMAYS TO / 1 3X1
```

```
2321
                    THE DIFFERENT, BUT EBUILDALENT, FORMULATIONS FOR MAY 4,
2322
                    PRESPONSE CALCULATION, AND BOTH ARE IMPLEMENTED IN THIS 4,
2323
                    ◆cnne: ◆ )
            MRITE (6:140)
2324
2325
        140 FORMAT (1H +3x++##
                                    = (#+PHI) ++ /
          1 12x1+F FIRST-DRDEM INTEGRAL MESPONSE FROM FORWARD 4: 2 +CALCULATION 4: /
2326
2327
           2 $CALCULATION $; /
3 12x; $P$ FORMARD INTEGRAL RESPONSE FOR THE UNPERTURBED $;
4 $PREFERENCE CASE $; //; $x; $P$ $\infty (g) FISTAR) $; /
5 12x; $P$ FIRST-DEDER INTEGRAL RESPONSE FROM ADJOINT CALCULATION$; /
6 12x; $P$ ADJOINT INTEGRAL RESPONSE FOR THE UNPERTURBED $;
7 $PREFERENCE CASE $; }
WRITE (6:150)
232R
2329
2330
2331
2332
2333
        150 FORMAT(1M +3x+*DELI-AD = (FISTAB+DELTA-SIGMA*,1M*+*PHI) *+ /
2334
           1 12xx+= SECOND-DRDER TERM (DELTA-1) FROM ADJOINT-DIFFERENCE +:
2335
2336
                   *FORMULATION *1 //
2337
           3 4x1+DELI-FD # (PHI+DELTA-SIGNASTAR+,1H+++FISTAR) ++ /
2338
           4 12x1 == SECOND-DRDER TERM (DELTA-1) FROM FORWARD DIFFERENCE +: 5 +FORMULATION +: //
2339
           6 4x1+12AD
                            * SECOND-ORDER INTEGRAL RESPONSE FROM ADJOINT-+,
2340
2341
                   *DIFFERENCE FORMULATION ** /
2342
           8 12x+4= APPROXIMATE INTEGRAL RESPONSE FOR PERTURBED CASE 4+ >
2343
            HRITE (6:160)
           1 PEDPHARD-DIFFERENCE FORMULATION 0; /
2 12x; 0= APPPED INATE INTEGRAL RESPONSE FROM 0; /
3 4x; 0= APPPED = SENSITIVITY COEFFICIENT FROM 0; /
2344
       160 FORMAT (1M +3×++12FD
           1 2
2345
2346
                            # SENSITIVITY COEFFICIENT FROM ADJOINT-DIFFERENCE ++
2348
                 PEDRHULATION #1 //
2349
           5 4x++xFD
                           F SENSITIVITY COEFFICIENT FROM FORMARD-DIFFERENCE +
                *FORHULATION *: //
2350
           7 3x1 PAPPROXIMATE CALCULATIONS OF THE INTEGRAL RESPONSE FOR +1
2351
2352
           8 THE PERTURBED CASE FOLLOW DIRECTLY FROM THE AD- AND FD-+./ 9 3/++FDRHULATIONS (C.F. PEFERENCES): + / )
2353
      2354
2355
2356
2357
2358
      ыріте (6:180)
180 ғолнат(1н :32×:•яя
2359
                         2360
2361
2362
2363
            MPITE (6:100)
2364
2365
            RETURN
2366
            END
2367 c
2368 c
2369 c
2370 c
2371 c
2372
            SUBROUTINE SUBSIFICATION STREET DELIFORM LMAXPE
                              IGMIAXSISENISXSIEIDELUIDSLFDIFFDIFISXSI
2373
2374
                               SENTIALINCOUPLIENTIFFDNGINIADES)
2375
            LEVEL 2. DSL.PSI.DSLFD
            DIMENSION MES (1) + SEN (1) + SES (1) + E (1) + DELU (1) + DSLFD (16M+ 16M+ 1) + FFD (1
2376
2377
                        ) | FISXS (1) | SENT (1) | FFDNG (1) | THOLH1 (50) | EE (50)
2378
            DIMENSION F(1):DSL(IGM:IGM:1):PSI(IGM:LMA:P:1):CHI(1):DST(1)
2379
            COMMON/XSFORM/NXS1IMT1IMA
2380
            COMMON'PLOTY TITLE (8)
2381
            COMMON/ITE/ITEST; ITYP
2382
            INTEGER 6:6P
            PEAL ICAD ICFD
2383
            DATA P1/3.141591/
2384
2365
       410 FORMAT (6E12.5)
            IF ((K.EB. 0). AND. (31.EB. 1)) MRITE (6:1014) (TITLE (1):1=1:8)
2386
2387
      1014 FORMAT (IN .
                             8m10./)
2388 c
2389 C SET UPPER-BOUNDARIES FOR GROUPS
2390
            1F (NCDUPL.EB. 0) 60 TD 250
            DO 255 6=1 NCDUPL
2391
2392
            EE (6) =E (6)
2393
      255 CONTINUE
2394
            NCP1=NCBUPL + 1
2395
            20 260 SENCP1+16H
2396
            EE (6) =E (6+1)
2397
       260 CONTINUE
       50 pp 265 6=1+16M
239B
2399
2400
            EE (6)=E (6)
```

```
2401
      265 CONTINUE
2402 c
2403 C +++ CALCULATE SECOND DADER EFFECT OF INTEREST FROM AD-FORMULATION
2404
       205 IF (31.ER.1) DELI=0.0
2405
           DO 5 L=1+LHAXP
           IF (H>S.EB.2) THOLMI(L)=1.0
IF (HXS.NE.2) THOLMI(L)=FLOAT(20L-1)
2406
2407
2408
         5 CONTINUE
2409 c
2410 C +++ USE A SIMPLE SUMMATION DVER L
2411 DD 99 G#J1:16H1
           F(G)=0.0
2412
2413
          DO 98 L=1+LMAXP
2414
           DD 98 6P=J1.6
       98 F(6) = THOLM1(L) +DSL(6P+6+L) +PSI(6+L+6P) + F(6)
2415
       99 DELIEDELI+ (DST (6) +CHI (6))-F (6)
2416
2417
           IZAD = PR - DELI
2418
           XAD = IÊAD/AR
2419 c
2420 C +++ CALCULATE SECOND DADER EFFECT OF INTEREST FROM FD-FORMULATION
2421 c
2422
           z \in (J1.ER.1) DELIFD = 0.0
2423
          DD 89 G=J1:IGM1
FFD(G) = 0.0
2424
          DD 88 L=1.LMAXP
DD 88 SP=6.1641
2425
2426
2427
           FFD(G)=FFD(G)+THDLM1(L)+DSLFD(G+G+L)++SI(G++L+G)
       68 WHITE(2:1302) THOLHI(L):DSLFD(G:GF:L):PSI(GF:L:G):FFD(G)
302 FDRHAT(5H :4E12.5)
2428
     1302 FORMAT (5H
2429
      DELIFD # DELIFD + DST(6)+CHI(6) - FFD(6)
69 HRITE(2:1303) DST(6):CHI(6):FFD(8):DELIFD
2430
2431
     1303 FORMAT (1m +4e12.5)
12FD = MR - DELIFD
2432
2433
2434
          XFD = 1CFD/RR
          IF (ITYP. NE. 1) 60 TO 100
2435
2436 c
2437 C +++ START EDITING DESIGN SENSITIVITY INFORMATION
IF (J1.NE.1) 60 TO 71 HPITE (6:1100)
2443
2444
2445 1100 FORMAT(IM :*DESIGN SENSITIVITY INFORMATION: INTEGRATED DIER *:
        1 + ALL ENERGIES + /
2 + FOR THE SUN DUER ALL PERTURBED ZONES + / )
2446
2447
          MRITE (6:1101) DELI: DELIFD
2448
    2449
2450
        1
       SD TD 73
71 MPITE (6:1102) DELI: DELIFD
2451
2452
1103 FORMAT (5x+4)NTEGRAL RESPONSE FOR UNPERTURBED REFERENCE CASE:

1 488 # 4+1PE12.5+/ )

WRITE (6+1104) 12AD+ 12AD
2456
2457
2458
2459
    1104 FORMAT (5x1+INTERGRAL MESPONSE FOR PERTURBED CASE: 4:14x1
          1 +12AD # +111
HPITE (6:1105) XAD: XFD
        1
2460
                            = +. iPEl2.5.5xxx+12FD
                                                        # ++1PE12.5+/ )
2461
    2462
        1
2463
                                                        = +, 1PE12.5,/// )
          1 +xAD 60 TO 73
2464
2465
       70 IF (J1.NE.1) 60 TO 72
2466
          MPITE (6+1106) K
    1106 FORMAT (IN ++CONTRIBUTIONS TO DELI-AD AND DELI-AD FROM PERTURBED ++
2467
    1 PIDNE K #0-13 / )

HPITE (6:1107) DELI: DELIFD

1107 FDRHAT (5::0FROH NEUTRON GROUPS DNLY! 0:10x.
2468
2469
2470
2471
       1
2472
2473
2474
    1108 FORMAT (SyleFROM NEUTRON PLUS GAMMA GROUPS) 4.4x
2475
                            # +,1PE12.5:5x:+DEL1-FD
               PDELI-AD
                                                        = +,1PE12.5,// )
2476
       73 CONTINUE
2477 C *** END EDITING DESIGN SENSITIVITY INFORMATION
2478 c
2479 60 TD 900
2480 100 CONTINUE
```

```
2481 C +++ FOR SENSITIVITY CALCULATIONS IT FOLLOWS
                          +F(G) PR IS THE GAIN-TERM FROM SCATTERING MATRIX
2482 C
2483 c
                         -DST(G)+CHI(G)/RR IS THE LDSS-TERM FROM SIGHA-TOTAL
                         -AXSIG! +CHIG / PR IS THE LOSS-TERM FROM SIGNA-ASSORPTION -SXSIG! +CHIG) / PR IS THE LOSS-TERM FROM SIGNA-SCRITERING (DUT)
2484 C
2485 €
                         SYSIG) IS FINALLY USED FOR THE SUM OF LOSS- AND GAIN-TERMS FROM SC SENIG) IS FINALLY USED FOR THE SUM OF LOSS- AND GAIN-TERMS IF (NCOUPL. ER. 0) GO TO 942
2486 C
2487 c
2488
                          IF (J1.NE.1) GD TD 941
2489
                          HRITE (6,1750)
2490
2491
             2492
                       •44H NEUTRON CROSS SECTION SENSITIVITY PROFILES #
2493
                         GD TD 942
2494
2495
                941 CONTINUE
                          HRITE (6, 1751)
2496
             2497
                       +42H GAMMA CROSS SECTION SENSITIVITY PROFILES +
2498
2499
2500
                942 CONTINUE
                         IF ((K.EB.0).AND. (J1.EB.1)) MRITE (6:1080)
IF ((K.EB.0).AND. (J1.NE.1)) MRITE (6:1082)
2501
2502
2503
                          IF ((K.GT.0).AND. (J1.EB.1)) HRITE (6:1081) K
2504
                          IF((K.GT.0).AND.(J1.NE.1)) MRITE(6:1083) #
           1080 FORMAT (2M +40(1M+)++ SUMMED DUER ALL PERTURBED ZONES ++40(1M+)+
1082 FORMAT (2M +34(1M+)++ SUMMED DUER ALL PERTURBED ZONES ++34(1M+)++
1081 FORMAT (2M +42(1M+)+++ FOR PERTURBED ZONE K =++13+1x+44(1M+)+
1083 FORMAT (2M +37(1M+)+++ FOR PERTURBED ZONE K =++13+1x+37(1M+)+)
25.05
2506
2507
2508
2509 C +++ COMPUTE LOSS-TERMS: GAIN-TERMS: AND NET SENSITIVITY PROFILES
2510 C *** FOR BOTH! PURE NEUTRON AND PURE GARNA INTERACTION XS
2511 C *** (WHICH OF THE THO IS COMPUTED DEPENDS ON THE VALUES OF J1 AND IGH1
                       SABS = 0.0
2512
                         SFIS = C.O
2513
2514
                         STDT = J. 0
                         SSCATE 0.0
2515
2516
                         SFFD = 0.0
2517
                         SFAD = 0.0
2518
                         SSEN = 0.0
2519
                         SSENT = 0.0
2520
                         DD 2 6=31:10m1
2521
                                       # F(G)/(P#+DELU(6))
                         F(6)
2522
                         FFD(6) = FFD(6)/(RR*DELU(6))
2523
                         Ars(6) = -(Ars(6)+CH1(6))/(BR+DELU(6))
                         FISHS(6) \approx -(FISHS(6)) + (FISHS(6)) \times (FIS
2524
2525
2526
2527
                         SEN(6) = SXS(6) + FFD(6)
2528
                         SENT(6) = DST(6) + FFD(6)
                         SABS = SABS + AXS(6)+DELU(6)
SFIS = SFIS + FISXS(6)+DELU(6)
2529
2530
2531
                         SSCATE SSCAT+ SES(6)+DELU(6)
2532
                         STOT = STOT + DST(6) +DELU(6)
2533
                         SFFD = SFFD + FFD(6)+DELU(6)
2534
                         SPAD = SPAD + F(G)+DELU(G)
2535
                         SSEN # SSEN + SEN(6) +DELU(6)
2536
                         SSENT = SSENT + SENT(6)+DELU(6)
2537
                  2 CONTINUE
2538
                         IF (NCDUPL.ES. 0) SD TD 8000
                         IF (J1.NE.1) 60 TO 2001
2539
2540 C *** COMPUTE GAMMA PRODUCTION PROFILE FFDNG (GAIN-TERM DNLY)
2541
                    NG1=NCDUPL+1
                         DD 802 6=31.16m1
2542
2543
                         FFDN6 (6)=0.0
2544
                         DO 802 L=1.LMAXP
2545
                         DO 802 SPENSTIEM
2546
              802 FFDNG (6) =FFDNG (6) +TMDLM1 (L) +DSLFD (6+6P+L) +PS1 (6P+L+6)
2547
                         SFFDN6=0.0
254B
                         DD 804 6=31.16m1
                         FFDNG (6) = FFDNG (6) / (mm+belu (6))
2550
                804 SFFDNGESFFDNG+FFDNG (6) +DELU (6)
            8000 CONTINUE
2551
2552 C *** PRINT NEUTRON PROFILES (INCL. N-SANNA)
2553
                         IF (31.NE.1) 60 TO 2001
WRITE (6:11) 88
2554
                  11 FORMAT(IN ++ PARTIAL AND NET SENSITIVITY PROFILES PER DELTA-U: NOR +HALIZED TO MR = (R:PHI) = +:1PE12.5:/
2555
2556
2557
2558
                       ** FOR NEUTRON INTERACTION CROSS SECTIONS: (N-N) RND (N-SAMMA)*//)
                         HRITE (6:21)
2559
```

```
2561
           MPITE (6:12)
2562
        12 FDMMAT (1H : * GROUP UPPERTE (EV) DELTA-U+ 8x + 4x x 5+ 7x + 4NU-F155+
2563
          47x++5x5++9x++TX5++8x++N-GAIN++4x++N-GAIN+SED/++3x++NG-GAIN+ )
2564
           PD 13 G=31:16H1
2565
           MRITE (6,14) G:EE (6):DELU(6):AXS(6):FISXS(6):SXS(6):DET(6):
                       FFD(G);F(G);FFDNG(G)
2566
2567
        14 FORMAT (1H +15+2x+1PE10.3+2x+1PEY.2+2x+7(2x+1PE10.3))
2568 C *** REVERSE NORMALIZATION FROM PRINTED PROFILES BACK TO
2569 C +++ DRIGINALLY STORED XS-VECTORS
         JF (CH1(6).LT.(1.0E-15)) GD TD 13
2570
2571
2572
                   # -615 (6) +8845FLU(6)/CH1(6)
           AVE (C)
           FISHS(6) # -FISHS(G)+MM+DELU(6)/CHI(6)
                  = -E>E(G)+PRH+DELU(G)/CHI(G)
= -EST(G)+PRH+DELU(G)/CHI(G)
2573
           5×5(6)
2574
           DST(6)
2575 c +++ END REVERSE NORMALIZATION
2576
       13 CONTINUE
           WRITE (6, 201)
2577
2578
      2579
           HRITE (6:15) SABSISFISISSCATISTOTISFEDISFADISFEDIG
2580
       15 FORMAT (IM : 1x: *INTEGRAL *: 21x: 7 (2x: 1PE10.3):/)
           MPITE (6:22)
2581
        22 FORMAT (1H +32x+22H++++ NET PROFILES ++++)
2582
2583
           HETTE (6:16)
2584
        16 FORMAT (IM ++ GROUP UPPERTE (EV) DELTA-U ++ 07x++SEN++ 09+++SEN++)
           20 17 G=J1+16m1
2585
2586
           HRITE (6:18) 6:EE (6):DELU(6):SEN(6): SENT(6)
2587
        18 FDPMAT(1m > 15,2x, 1pe10.3,2x, 1pey.2,2x,2(2x, 1pe10.3))
2588
       17 CONTINUE
2589
           HRITE (6,202)
2590
      202 FDMHAT (1H +30x+2(2x++-----+))
           HRITE (6:19) SSENISSENT
2591
2592
       19 FORHAT (2H ++INTEGRAL++21x+2(2x+10=10.3)/)
2593
           60 TO 900
     2001 CONTINUE
2594
2595 C *** PRINT SPECIFICATIONS FOR GAMMA PROFILES
2596
           HRITE (6,20) MA
        20 FORMAT (IN ++ PARTIAL AND NET SENSITIVITY PROFILES PER DELTA-UF NOR
2597
          +MALIZED TO MM = (M+PH1) = ++ 1PE12.5+/
2598
          ** FOR GAMMA INTERACTION CROSS SECTIONS: (GAMMA-GAMMA) DNLY **/)
2599
           MPITE (6:23)
2600
2601
        2602
          1++++HET PROFILES+++++)
2603
           HRITE (6:312)
26.04
       312 FORMAT (1H ++ GROUP UPPER-E(EV) DELTA-U+,8x++Ax5+,9x++5x5+,9x++TX5
2605
          +++Bx++c-cath++7x++cen++9x++cen++)
26.06
          DD 313 6=31:16H1
2607
           WRITE (6:14) - 6:EE (6) : DELU(6) : A:S(6) : S:S(6) : DST(6) : FFD(6) :
2608
                       SEN (G) | SENT (G)
2609 C +++ REVERSE NORMALIZATION FROM PRINTED PROFILES BACK TO
2610 c +++ DRIGINALLY STORED X5-VECTORS
          IF (CHI (G) .LT. (1.0E-15)) 60 TO 313
2611
2612
           MXS(G) # -A+S(G)+M#+DELU(G)/CH1(G)
           S#S(6) = -S#S(G)+##+DELU(G)/CHI(G)
2613
2614
          DST(6) = -DST(G)+##+DELU(6)/CH1(6)
2615 C *** END REVERSE NORMALIZATION
2616
     313 CONTINUE
           HPITE (6:203)
2617
2618
     203 FDRHAT (1H +30x+6(2x++-----+) )
          MRITE (6:15) SABSISSCATISTOTISFFDISSENISSENT
2619
2620 900
           CONTINUE
2621
           RETURN
2622
           END
2623 c
2624 c
2625 c
2626 c
2627 c
2628
           SUBRDUTINE SUBII (LMAXP.JI.IGMI: IGH: NA: NSED:
2629
                             PSED: PSEDGP: PSEDG: SSED: SHOT: SCOLD: DRSED:
2630
                             DSL+PS1+DELU+GMED+PSED >
2631 c
2632
           LEVEL 2: DSL+PSI+PSED
           DIMENSION PSED (IGH1+1)+PSEDGP (1)+PSEDG (1)+SEED (1)+SHOT (1)+
2633
                    SCOLD(1) : DESED(1) : DEL(164: 164: 1) : PS1(164: LMAXP: 1):
2634
                     DELU(1) + GHED(1) + FSED(1) + THOLM1 (50)
2635
26.36
           COMMON /VRS/ LL
2637
           COMMON /PLDT/ TITLE (8)
2638
           COMMON /YSFORM/ HXSIINTIINA
2639
           INTEGER SISPISHEDISHEDANISHEDPI
2640
           -
```

```
2641 c
2642 C +++ ZERD DUT THE NEW ARRAYS
              10 2 G=1:16H1
2643
              PSEDSP(6)= 0.0
2644
              PSED6(6) = 0.0
2645
              5550(6) = 0.0

5407(6) = 0.0
2646
2647
              SCOLD(6) = 0.0
2648
              D#SED(6) = 0.0
2649
2650
              DO 1 GP=1:16H1
            1 PSED(6P+6) = 0.0
2651
2652
           2 CONTINUE
2653 c
2654 C +++ COMPUTE ALL APPRAYS TO BE EDITED
2655
             DO 5 L=1+LL
              2656
2657
            5 CONTINUE
2658
              DE 33 GP=J1:16H1
2659
              DD 32 6 =31:16H1
DD 31 L =1:LL
2660
2661
2662
          31 PSED(GP:6) = PSED(GP:6) + (TMDLM1(L)+DSL(GP:6:L)+PSI(G:L:6P))
2663
             1
                                                / (RR+DELU(6) +DELU(6P))
          32 CONTINUE
2664
          33 CONTINUE
2665
2666
              GD TD 50
2667 c
              END OF COMPUTATION OF BASIC PSED (SPIG)
2668 C *** INTEGRATE PSED OVER ALL INCIDENT GROUPS GP: FOR ALL FINAL GROUPS G
          50 pp 52 6=1:16m1
pp 51 6p=1:6
2669
2670
2671
          51 PSEDGP(G) = PSEDGP(G) + PSED(GP(G)+DELU(GP)
2672
          52 CONTINUE
2673 C *** INTEGRATE PSED DUER ALL FINAL GROUPS &; FOR ALL INCIDENT GROUPS &P
2674 DD 62 &P=1:1&H1
             DD 62 SP=1:36H1
DD 62 S =SP:36H1
2675
2676
          61 PSEDG(GP) = PSEDG(GP) + PSED(GP+6)+DELU(6)
2677
          62 CONTINUE
2678 C +++ INTEGRATE PSED DNLY DVER HOT FINAL GROUPS
              IF (NSED.EB. 0) 60 TO 93
DD 72 6P=1+1641
2679
2680
              SHEDAN = SHED (SP)
2681
              IF (GHEDAN.EH.0) 60 TO 72
IF (GHEDAN.LT.SP) 60 TO 256
2682
2683
2684
              DD 71 GEGP: SHEDAN
          71 SHOT(GP) = SHOT(GP) + PSED(GP:G)+DELU(G)
SHOT(GP) = SHOT(GP)+DELU(GP)
2685
2686
          72 CONTINUE
2687
2688 C *** INTEGRATE PSED DALY DVER COLD FINAL GROUPS
              DD 82 6P=1:16H1
2689
              IF (GMED(6P).EB.0) OD TO 82
IF (GMED(6P).EB.16M1) OD TO 82
2690
2691
2692
              2693
              DD 81 6=GMEDP1: IGH1
          81 SCDLD(GP) = SCDLD(GP) + PSED(GP+6)+DELU(G)
SCDLD(GP) = SCDLD(GP)+DELU(GP)
2694
2695
          82 CONTINUE
2696
2697 C \stackrel{\text{de}}{\longrightarrow} compute integral sed sensitivity coefficients and response uncert. 2698 Tased = 0.0
2699
              TSHOT = 0.0
2700
2701
              TSCOLD= 0.0
TDPSED= 0.0
2702
              DD 91 6P=1:16H1
              DEST (6P) = SHOT(6P) - SCOLD(6P)
DRSED(6P) = FSED(6P)+SSED(6P)
2703
2704
2705
              DRSED(GP) = ABS(DRSED(GP))
2706 C +++ CDMPUTE TOTAL INTEGRALS
2707 TSSED = TSSED + SSED(6P)
2708 TURSED* TDRSED+ DRSED(6P)
          TSHOT = TSHOT + SHOT(SP)
91 TSCOLD= TSCOLD+ SCOLD(SP)
2709
2710
2711
          92 CONTINUE
2712 c +++ CDHPUTE TOTAL INTEGRALS OF SINGLY DIFFERENTIAL PROFILES
2713 53 TPSEP = 0.0
2714 TPSE = 0.0
2715 DD 94 ==1:16H1
2716 TPSEP = TPSEP + PSEDEP(1) +DELU(1)
2717 TPSE = TPSE + PSEDE(1) + DELU(1)
          94 CONTINUE
2716
2720 C 444 NON HE START EDITING
```

```
2721 c
              PRINT PSED (GPIG) #PSED (G-INIG-DUT) AND INTEGRAL SENS. PROFILES
2722 c
              WRITE (6:200) PR
2723
2724
         200 FORMAT (IM +/+35 (IM+)++DOUBLE-DIFFERENTIAL SED SENSITIVITY++
2725
                      + PROFILES+;
                      36(1H+):/: 1H +34(1H+): +FDR THE SUN DUER ALL SPECIFIED +:
2726
                      PERTURSED ZONES+:35(1H+)+/
                    OPERTURAED ZONESOFICIOLINTIFE

14 PPERURAE DEFENENTIAL PROFILES PER DELTATUTA AND PER OF

14 PPERURAE DEFENENTIAL PROFILES PER DELTATUTA AND PER OF
2727
2728
2729
                          *DELTA-U-DUT: NORMALIZED TO MR=(M:PHI)= +:1PE12.5:/:
                     TH TOFOR NEUTRON GROUPS DNLYGOV )
2730
             5
              HRITE (6:210)
2731
2732
        210 FORMAT (18x+27 (1M+)++PSEP (G-IN+S-DUT) PER (DELU-IN) (DELU-DUT)++
2733
                           *##+,27(1H+),/,
                   2734
2735
2736
              MRITE (6:220)
2737
        220 FORMAT (1M + 46-DUT DELU-DUT+)
2738
        12 = 0
2739
2740
              12 = MINO(12+10, 16H1)
              230 G=1+16m1
2741
        WRITE (6:231) (G:DELU(G):(PSED(GP:G):GP=11:12) )
231 FDRHAT(IN::13:3x:F8.6:1x:10(1x:1PE9.2) )
2742
2743
2744
        230 CONTINUE
2745
              IF (12.EP.16H1) 60 TO 232
2746
              MRITE (6:233)
2747
        233 FORMAT (1H )/)
2748
              GD TD 221
2749
         232 CONTINUE
2750
2751
2752
2753
2754
              HRITE (6,240)
        240 FDRMAT(IM +16x+3(IM+)++ SINGLE-DIFFERENTIAL PROFILES+ PSED +1 3(IM+)+/+16x++ PSED(G-DUT) PSED(G-IN)++/+
2 1x++G-IN DR G-DUT PER DELU-DUT PER DELU-IN ++/>
                      1x++6-IN DR 6-DUT PER DELU-DUT
             DD 242 1=1+16H1
HRITE (6+241) 1+PSEDGP(1)+PSEDG(1)
2755
2756
2757
        241 FORMAT (1M +4x+13+10x+1PE1U.3+6x+1PE1U.3)
        242 CONTINUE
         2758
2759
2760
             HRITE (6:244) TPSGP:TPSG
2761 244 FORMAT (IN 1-TOTAL INTEGRAL 2762 C +++ END OF SED-PPROFILE PRINTS
                                                   0,1pg10.3,6x,1pg10.3)
2763
              IF
                  (MSED.NE. 0) 60 TO 249
2764
              MRITE (6+245)
              2765
        245 FORMAT (1H 1//14ND SED UNCERTAINTY ANALYSIS WAS PERFORMED FOR 41
          1
2766
2767
2768 C *** EDIT SED UNCERTAINTY INFORMATION
2769
        249 MRITE (6:246) (TITLE(1):1=1:8)
248 FORMAT(1H :6810:/)
2770
2771
             MRITE (6:250)
         250 FORMAT (14:44(14+); + SED UNCERTAINTY AMALYSIS +:44(14+); //;

1 15x; + Mediam +:3x; + Integral +:3x; + Mot Integral +:3x;

2 +COLD Integral +:3x; + Met Integral +:3x; + Response uncert, +/;

3 15x; + G-DUT +:3x; + SED-UNCERT, +:3x; + SENS, COEFF, +:3x;

4 + SENS, COEFF, +:3x; +SED SENS, -COEFF, +:6x; + DR/R +:/
2772
2773
2774
2775
2776
             5 15x10 DF SED 013x10 F 017x10 S-HDT 6 0 S-CDLD 019x10 S 019x10DUE TD SED-UNCERT.0/7 5x10 G-IN015x101FRDH INPUT)01
            5 15×++ DF SED
2777
2778
            B 3x++(FROM INPUT)+:38x++(SHOT + SCOLD)+:09x:74(F + S)+/)
2780
2781
              20 252 se=1.16ml
              HRITE (6:251) GP:GHED(GP):FSED(GP):SHDT(GP):SCDLD(GP):
2782
2783
             1
                       SSED(GP)+ DPSED(GP)
2784
        251 FORMAT (1m +5x+13+09x+13+11x+F7.4+9x+1PE10.3+6x+1PE10.3+
2785
                      6x, 1pg 10.3, 9x, 1pg 10.3)
2786
        252 CONTINUE
              MPITE (6,253)
2787
2788
        253 FDMAT (1H +47x++------++6x+10(1H-)+8x+10(1H-)+9x+10(1H-) )
        HPITE (6:254) TSHOT+TSCOLD+TSSED+TDREED
254 FORMAT (1H ++TDTML INTEGMAL++33x+1PE10.3+6x+1PE10.3+8x+1PE10.3+
2789
2790
2791
                      9x+1PE10.3)
        PERCT = 100.0+TDRSED
HRITE (6:255) PERCT
255 FDRHAT (99x++= +:F9.3++ PER CENT++/+1H1)
2792
2793
2794
2795
             60 TD 999
2796
2797
         256 WELTE (6+257)
         257 FORMAT(IN 19ND SED UNCERTAINTY ANALYSIS CAN BE PERFORMED91/1

1 9 BECAUSE THE INPUT ARRAY FOR SMED(6) CONTRINS AT LEAST91/1
2 9 DNE MEDIAN SED EMERGY GROUP NUMBER SPECIFIED TO BE 9/1
2798
2800
                    + LESS THAN THE INCIDENT ENERGY GROUP. 4/9
```

```
+ GHEI-(G) MUST ALMAYS BE GREATER DR EBUAL TO 6 14/\gamma + CORRECT INPUT DATA! + )
2801
           5
2602
        999 CONTINUE
26.03
             RETURN
2804
28:05
             END
2806 c
2807
2808 c
2809 c
2610 c
             SUBROUTINE SUBSU (VXS1:VXS2:CDV:CH1:DELU:P1:P2:DR:E:IGH:IGH1:
2811
                                 IPERIARI IDINISIDEN 1 (DENĈ)
2812
2813 c
2014 C *** THIS POUTINE COMPUTES AND EDITS SENSITIVITY PROFILES FOR VECTOR
2815 C +++ CROSS-SECTIONS IN PAIRS OF E.
2016 C +++ 17 ALSO COMPUTES AND PRINTS DELTA-R DVER R FOR THIS XS-PAIR AND
2817 c *** ITS COVERIENCE MATRIX.
2818 c
             LEVEL 2.CDV
2819
2820
             DIMENSION VXS1 (1)+VXS2 (1)+CDV (16H1+1)+CH1 (1)+DELU(1)+P1 (1)+P2 (1)+
2821
            1
                        DR (1)+E(1)
            COMMON /ITE/ ITEST/ITYP
2822
2623
             INTEGER 6:6P
2824
2825
             REAL PR
2826
             MRITE (6:1000) (TITLE(1):1=1:8)
      1000 FORHAT (1H +8A10+/)
2827
      MRITE (6:1100) ID

1100 FORMAT(IM :///:24(IM+):+ SENSITIVITY PROFILES FOR CROSS-SECTION +:
2628
2829
                   *PAIRS HITH ID = *:13:1x:25(1H+) )
2830
            HPITE (6:1200) MR
2831
2832
      1200 FORMAT (14 + 491 (6) AND P2 (6) ARE PER LETHARGY MIDTH DELTA-U AND 4.
      1 PHORHALIZED TO THE RESPONSE RR = (0,PHI) = 0,1PE12.5)

HRITE (6:1300) DENI: DENZ

1300 FORMAT(1M:0FOR THE SUN DUER ALL PERTURBED ZONES; WHERE BOTH CROO;

1 055 SECTIONS WITH THIS ID ARE PRESENT IN THE MODEL 0/;

2 OTHE NUMBER DENSITIES FOR THIS X5-PAIR ARE NOEN1 = 0;
2833
2834
2835
2836
2837
2838
            3 1PE12.5: + AND NDEN2 = +:1PE12.5: / >
2839
             HRITE (6:1400)
2840 1400 FORMAT(1m ++ SHOUP UPPER-E(EV) DELTA-U++7×++P1(S)++7×++P2(S)+-7
2541 C +++ COMPUTE SENSITIVITY PROFILES AND INTEGRAL SENSITIVITIES
2642
            se1 = 0.0
            SP2 = 0.0
2843
2844
            DD 1 6=1:16M1
2845
            P1(G) = -(UxS1(G)+CH1(G))/(PP+DELU(G))
P2(G) = -(UxS2(G)+CH1(G))/(PP+DELU(G))
2846
2847
            SP1 = SP1 + P1(6)+DELU(6)
SP2 = SP2 + P2(6)+DELU(6)
2646
2849
          1 CONTINUE
2850 c *** PRINT PROFILES
2851
            DD 2 6=1:16m1
2652
            MRITE (6:1500) 6:E(6):DELU(6):P1(6):P2(6)
     1500 FDRHAT (1H +15,2x+1PE10.3+2x+1PE7.2+2x+2(2x+1PE10.3) >
2623
2854
         É CONTINUE
2655
            HPITE (6:1600)
      1600 FDRHAT (1H +30x+2(2x++------) )
2856
2857
            HPITE (6:1700) $P1:5P2
2058 1700 FORMAT (IN +1x++:NTEGRAL++21x+2(2x+1PE10.3)+/)
2859 C *** PERFORM UNCERTAINTY ANALYSIS FOR THIS XS-PAIR AND ITS COV
2560 C +++ FIRST REVERSE THE PER-DELTA-U NORMALIZATION OF THE PROFILES
2861
            DD 3 6=1:16H1
            P1(6) = P1(6)+DELU(6)
2862
2863
          3 P2(6) = P2(6) +DELU(6)
2664 C *** CALCULATE DOUBLE SUM (USE ARRAY VXS2(G) AS INTERMEDIATE SINGLE-SUM
2665 DADVASD = 0.0
2866
            DD 4 SELETSHI
2867
            Ux$2(6) = 0.0
2666
            DD 5 ep=1.zem1
          5 UXS2(6) = UXS2(6) + P2(6P)+CDU(6+6P)
4 DRDURSE = DRDURSE + UXS2(6)+P1(6)
1F(DRDURSE.6C.0.0) on TO 6
2869
2870
2671
2672
             MPITE (6:1800) DROVESE
2673
      1800 FORMAT (1H ++ THE DOUBLE SUM FOR DR/R-SQUARE RESULTED IN A NEGA++
2674
         1
                  TIVE NUMBER + 1/1 DROVES = +1 1PE12.51/
2875
                    * ANALYSIS TERMINATED FOR THIS ID-NUMBER *1/
2876
                          * VARIANCE IS SET TO ZERO FOR LATER TOTAL VARIANCE CAL*
2R77
           3
                          PCULATION +/)
2678
           DR(N\times S) = 0.0
          60 TO 99
6 DROVE = SERT (DROVESE)
2879
2680
```

```
1985
                       PERCT = 100.0+DROVE
2882 C +++ EDIT UNCERTAINTY INFORMATION
          HRITE (6:1900) DROUPSD:DROUPSPERCT

1900 FORMAT(IN::20(IN+):++ AN UNCERTAINTY ANALYSIS FOR THIS CROSS-++:
2883
2884
                                    +SECTION PAIR YIELDS THE FOLLOWING +:20(1H+)+/
2885
                                    • FRACTIONAL RESPONSE UNCERTAINTY DUE TO XS-UNCERTAINTIES+;
• SPECIFIED IN THE COMMINACE MATRIX FOR THIS IDI+//>10x;
• MARIANCE; (DELTA-R DUER R)-SPUAME = (DR/A)SQ. = +;19E10.3;
• RELATIVE STANDARD DEVIATION = DR/A = +;19E10.3;
 2886
2867
                      3
2888
                     5/:10x++ RELATIVE STANDARD DEVIATION # D
6 /:55x++ = +:1PE1U.3++ PER CENT +:////)
2689
2891 C +++ SAUE URBIANCE FOR THIS ID: TO COMPUTE LATER TOTAL VARIANCE IN SUBS 2892 DR(NXS) = DROVASE 2893 99 RETURN
2894
                       END
2895 c
2896 c
2897 €
2898 c
2899 c
                      SUBROUTINE SUBS (COMPSENSESSED)
2900
2901 C +++ READS COVARIANCE MATRIX AND PERFORMS DOUBLE-SUM TO CALCULATE
2902 c
                     +DELTA-R QUER R
2903
                       LEVEL 21 COVE
                       DIMENSION CTITL(8); COUR (IGH:1):SEN(1):FSUH(1):DELU(1)
2904
2905 €≥€
2906 CLCM LEXT
2907 CDC+
29 DB
                        INTEGER 6:6P
2909 READ (5:1001) (CTITL(I):I=1:6)
2910 1001 FORMAT(8810)
2911
                       WHITE (6:1002) (CTITL(I):I=1:8)
2912
          1002 FORMAT (1H +6A10/)
2913
                       READ (5:1000) ((CDVR(6:GP):GP=1:16H):G=1:16H)
2914 1000 FORMAT (6212.5)
2915
                       DD 10 GP=1:16M
WRITE (6:1003) (GP:(CDV#(6:GP):6=1:16M))
2916
           1003 FORMAT (1H ++6P=+:13:20(1x:F5.3)/)
2917
2918
               10 CONTINUE
2919
                      DD 11 6=1:16H
2920 11 SEN(6) = SEN(6) +DELU(6)
2921 C +++ CALCULATE DOUBLE SUM
                   DROVE # 0.0
2922
                       DD 99 6=1:16
2923
2924
                       FSUM (6) = 0.0
               DD 98 6P=1+16H
98 FSUM(6) = FSUM(6) + SEM(6P)+CDUM(6+6P)
2925
2926
2927
               99 DROVR = DROVR + FSUH(6)+SEN(6)
2928
                       IF (DROVE.GE. 0. 0) 60 TO 1
2929
                        MRITE (6:1004)
2930 1004 FORMAT(1M ++DR/R-SQUARE RESULTS AS NEGATIVE NUMBER FROM DOUBLE SUM
2931
                     . .///>
2932
                       60 TD 9999
                   1 DEDUK = SPET (DEDUK)
PERCT = 100. + DEDUK
2933
2934
          HEITE (6:1005) DEDURINERCY
1005 FORMAY (1M 14THE CALCULATED FRACTIONAL UNCERTAINTY OF THE PESPONSE
2935
2936
                     PR P/P DUE TO CROSS-SECTION UNCERTAINTIES GIVEN IN THE ABOVE CONARI
PANCE HATRIX 159/+5X++DR/R #++3x+F8.5+/5x++DR EDUAL++4x+F8.3+
2937
2938
                     PANCE MATRIX 154/15x14DB/R
2939
                     .. PERCENTE)
2940 C +++ CALCULATE TOTALLY CORRELATED(+1) AND TOTALLY UNCORRELATED CASES
2941
                       CORDR = 0.0
                       UHCDR = 0.0
2942
2943
                       DD 20 6=1.16M
2944
                       CORDR = CORDR + SEN(6)+SBRT(CDVR(6+6))
UNCDR = UNCDR + SEN(6)+SEN(6)+CDVR(6+6)
2945
2946
               20 CONTINUE
2947
                        CONTRENDS (COMPA)
2948
                       UNCOR - SPRT (UNCOR)
                       MPITE (6:1007) COMPR
2949
2950 1007 FORMAT (IN + MASSUMING FULL CORRELATION (41) ME DETAINMED 5A+ MORRE POLL CORRELATION (41) MORRE POLL CORRELATION (41) ME DETAINMED 5A+ MORRE POLL 
2951
                              = +, =8.5/)
                       HRITE (6-1008) UNCOR
2952
2953 1008 FORMAY (IN 19ASSUMING NO CORRELATION ME DETAINS/15x19DE/8-UNCORR =
2954
                     +++F8.5/)
                      DD 5 6=1:16H
2956
                       SEN(6) = SEN(6)/DELU(6)
                   5 CONTINUE
2957
2956 9999 METURN
2959
                      END
2960 c
```

```
2961 c
2962 c
2963 c
 2965
                     SUBROUTINE SUBYN (DRSF+NCON+NSUMCON)
 2966 c
 2967 C +++ THIS BOUTINE COMPUTES DR-DVER-R FOR THE SUN OF ALL XS-UNCERTEINTIE
 2968 C +++ ASSUMING ND CORRELATIONS BETHEEN THE INDIVIDUAL >S ERRORS SPECIFIE
 2969 C +++ IN ANY AND ALL OF THE HODY COVARIANCE MATRICES.
 2970 c
2971
                     TIMENSION DREE(1)
                    INTEGER SUMSTRY SUMEND
2972
2973
                     WRITE (6:1400)
2974
           1400 FORMAT (1H1+36(1H+)++ PARTIAL SUMS OF RESPONSE UNCERTAINTIES ++
 2975
2976
               1
                            36 (1H+)//)
              NSUM = 0
30 NSUM = NSUM
2977
2978
2979
                    READ (5:1300) SUMSTRY: SUMEND
2980
           1300 FDPHAT (2:6)
2981
                    UNCORSE = 0.0
2992
                    TO 40 JESUMSTRIVEUMEND
2983
               40 UNCORSE = UNCORSE + DRSE(3)
                    UNCOR = SPRT (UNCORSE)
PERCT = 100.0+UNCOR
2984
2985
2986
                    MRITE (6:1500) SUMSTRT: SUMEND
2987
           1500 FORMAT (1H + PASSUMING NO CORPELATION AMONG THE STRING OF INPUT +,
                 1 DEDUCATION OF THE DESPONSE UNCERTAINTIES DUE TO DE TOURS OF THE DESPONSE UNCERTAINTIES DUE TO DE TOURS OF THE DESCRIPTION OF 
2988
                               PINPUT SEPUENCE NUMBERS +112++ THROUGH +112++ HAVE BEEN +
2989
2990
                               SUMMED AND YIELD SI/)
2991
                    HRITE (6:1600) UNCORSE: UNCOR: PERCT
2992
           1600 FORMAT (IN :11x: *PARTIAL SUM OF VARIANCES
                                       12×1+PELATIVE STANDARD DEVIATION
                                                                                                           = +.1PE10.3:/
                1 2
2993
                   1 12×1+PELATIVE STANDARD DEVI

2 + + +:1PE10.3:+ PER CENT + ///)

IF (NSUM.NE.NSUMCOV) 60 TO 30
                                                                                                           = +, 1PE10.3.
2994
2995
2996 C +++ SUM DUER ALL VARIANCES
2997
             20 UNCORS# = 0.0
2998
                   DD 10 J=1:NCDV
              10 UNCORSE = UNCORSE + DRSE(J)
2400
               UNCOR = SOPT (UNCORSE)
PERCT = 100.00uncor
3000
3001
3002 C *** EDIT INFORMATION AT THE VERY END OF THE ENTIRE UNCERTAINTY ANALYS.
3003
                    MRITE (6:1000) NCDV
         1000 FORHAT (IN +20(IM+)++ THIS COMPLETES THE INDIVIDUAL VECTOR ++
3004
3005
              1
                         +CRDSS-SECTION UNCERTAINTY ANALYSIS + +20(1H+)+//+
                               + ASSUMING THAT ALL SPECIFIED XS-COVARIANCES ARE UNCORRELA++
3006
3007
                         TEDI HE DETAIN THE FOLLOWING TOTAL RESPONSE UNCERTAINTY TITE
                           * DUE TO ALL XS-UNCERTAINTIES SPECIFIED IN ALL *1131
3006
3009
                               + COVARIANCE MATRICES + / >
3010
                    MRITE (6:1100) UNCORSE: UNCOR: PERCT
          3011
3012
3013
3014
                   HRITE (6,1200)
3015
          1200 FDRHAT (1H +36(1H+)++ END DF CDHPUTATION - NO HORE COVABIANCE ++
                1
3016
                              *DATA *:36(1H*):/:128(1H*) )
3017
                   RETURN
3018
                   END
3019
3020 €
3021 €
3022
         C
3023 c
3024 c
3025
                    SUBROUTINE SUB50 (VXS1:VXS2:CDV:16H1:1D: DEN1: DEN2)
3026 c
3027 C +++ READS PAIRS OF VECTOR XS AND THEIR COVARIANCE MATRIX
3028 c
3029
                   LEVEL 2. CDV
3030
                    DIMENSION COV (IGH1+1) +VXS1 (1) +VXS2 (1) +BLHECS (1)
3031
                    COMMON/ENDF/MATINFINTINDISTAINATINF1:MF2:MT1:MT2:MAT2:NOUTIND2
3032
                    CDMMDM/MTR#/CDM (50+50) + CE2 (50+50) + xs1 (200) +
3033
                              X$2 (200) +635 (200) +6 (10) +NEP
3034
                   COMMON/ITE/JTEST: ITYP
3035
                   MEAL DENI: DENE
3036 €
3037
                   NINES
3036
                   NUUTES
3039
                   NDT=10
3040
                   NE2=10
```

```
READ (NIN:10) ID: DEN1: DEN2
10 FORMAT(16:6x:2612.5)
3041
3042
            CALL COVARD (ID: 0: VXS1: VXS2: CDV: ISM1)
IF (ITEST, NE. 3) 60 TO 40
3043
3044
3045
            HRITE (NDUTIZO) NEPIMATI
         20 FORMAT (IN ++ MULTIGROUP COVARIANCE DATA IN +13+
3046
3047
           1
                  + GROUPS FOR MAT1 = +14)
            MRITE (MOUT-50) MT1
3048
3049
         50 FORMATILM : + MICROSCOPIC CROSS SECTIONS FOR MT1 = +13)
            HRITE (NDUT+30) (VXS1(N)+N=1+NGP)
HRITE (NDUT+60) HT2
3050
3051
3052
         60 FORMAT (IN ++ MICROSCOPIC CROSS SECTIONS FOR MT2 = +13)
            HRITE (NDUT:30) (VXS2(N):NF1:NGP)
HRITE (NDUT:70) HRT1:HT1:HT2
3053
3054
3055
         70 FORMAT (IH ++ MELATIVE COVARIANCE MATRIX - MATI = +14+
3056
                 + HT1= +13++ HT2 = +13)
3057
            HRITE (HDUT:30) ((CDV(I:3):3=1:NGP):1=1:NGP)
3058
            MPITE (NDUT:80) HATI:HTI:HTZ
         80 FORMAT(IH ++ ASSOLUTE COVARIANCE MATRIX FOR MICROSCOPIC+, 1 + CROSS SECTIONS OF MATI = +14+ 1 + MTI = +13+ MTZ = +13)
3059
3060
3061
3062
            HRITE (NDUT+30) ((CE2(1+3)+3=1+NGP)+1=1+NGP)
3063
         30 FORMAT (1910E12.3)
3064
         40 CONTINUE
3065 C *** TRANSFORM MICRO XS INTO MACROSCOPIC XS
3066
            DD 90 N=1+16H1
            UXS1(N) = DEN1 + UXS1(N)
UXS2(N) = DEN2 + UXS2(N)
3067
3068
3069
         90 CONTINUE
3070
            RETURN
3071
            END
3072 c
3073 €
3074 c
3075
3076 c
3077
            SUBPOUTINE COVERD (MYXINDHIYSELXSBICE1:16H1)
            POUTINE PEAD COVARIANCE DATA IN ENDF-LIKE FORMAT DUTPUT BY
3078 c
            NJDY AND TRANSFORMS IT TO T-1 FORMAT.
3079 c
            MRX = T-1 IDENTIFIER
NOM = ABS. COV. FLAG.=0:YES =1:NO.
3080 €
3081 c
3082 C
3083
            LEVEL 2. CE1
3064
            DIMENSION XSR(1)+XSB(1)+CE1(IGM1+1)
3085
            COMMON/ENDF/MATIMEIMTINDTIJBIIMATIIMFIPMF2:MT1:MT2:MAT2:MQUTINDE
3086
            COMMON/HTRX/COM (50:50) + CE2 (50:50) + XS1 (200) +
3087
                   xs2(200) +630(200) +6(10) +NGP
3086 €
3089
            MEYSHXX
3090
            JAYEMXX
3091
            CALL SETID
3092 c
3093 €
            SETID SETS UP INDEXES TO GET DESIRED MAX SET.
3094 €
3095 €
             TABLE FOR DEFINITION OF ID-HOS IN TERMS OF SPECIFICATION OF
3096 c
             CROSS SECTION COVARIANCES. NOTE IN THIS VERSION/MATIEMATE
3097
3098 c
                            HATE MT1
                                          MTZ CROSS SECTION COVERIENCE
                    HAT1
3099 c
3100 c
                                                BIG TOTAL MITH BIG TOTAL
                     305
                             305
                                    1
                                          1
                                               310 TOTAL MITH 310 ELASTIC
3101 c
                     305
                              305
                     305
                             305
                                         107
                                               310 TOTAL MITH 310 (MIRLPHA)
3102 c
3103 c
                      305
                             305
                                                BIU ELASTIC MITH BIO ELASTIC
3104 c
                                               310 ELASTIC MITH 310 (HIALPHA)
310 (HIALPHA) MITH 310 (HIALPHA)
               5
                     305
                             305
                                    2
                                         107
3105 c
                              305 107
                                         107
               6
                     305
3106 c
                     306
                             306
                                    1
                                               C TOTAL HITH C TOTAL
C TOTAL HITH C BLASTIC
3107 c
               8
                     306
                             306
3108 c
                      306
                              306
                                                C ELASTIC MITH C ELASTIC
3109 c
              10
                      306
                             306
                                                C INELASTIC HITH C INELASTIC
                             306 107
3110 c
              11
                     306
                                         107
                                                C (NIRLPHA) WITH C (NIRLPHA)
                                   į
3111 c
              12
                     324
                              324
                                                CR TOTAL HITH CR TOTAL
3112 c
              13
                      324
                              324
                                                CR TOTAL MITH CR ELASTIC
                                                CR ELASTIC WITH CR ELASTIC
CR ELASTIC WITH CR INELASTIC
3113 c
                      324
                             324
3114 c
              15
                      324
                              324
                                    5
3115 c
              16
                      324
                              324
                                    4
                                           4
                                                CR INELASTIC WITH CR INELASTIC
                      324
3116 c
              17
                              324
                                    4
                                         100
                                                CR INCLASTIC MITH CR CAPTURE
                      324
                              324 102
3117
              18
                                                CR CAPTURE WITH CR CAPTURE
    c
                                         102
3118 c
                      326
                              326
                                    1
                                                PE TOTAL HITH PE TOTAL
              20
                      326
                              326
                                                FE TOTAL MITH PE ELASTIC
3120 €
              21
                      326
                             326
                                         102
                                                FE TOTAL MITH FE CAPTURE
```

```
3121 c
                     326
                             326
                                           2
                                                FE ELASTIC WITH FE ELASTIC
3122 c
               23
                     326
                             326
                                                FE ELASTIC HITH FE INELASTIC
                              326
                                    2
                                         102
                                                FE ELASTIC WITH FE CAPTURE
3123 c
               24
                      326
               25
                                                FE INELASTIC HITH FE INELASTIC
                      326
                              326
3124 c
3125 c
               26
                      326
                              326
                                         102
                                                FE INCLASTIC HITH FE CAPTURE
                                         103
                      326
                              326
                                    4
                                                FE INCLASTIC WITH FE (NIP)
3126 c
3127 c
               28
                      326
                             326
                                    4
                                         107
                                                FE INELASTIC WITH FE (MIRLPHA)
                             326 102
                                                FE CAPTURE WITH FE CAPTURE
3128 c
               29
                     326
                                         102
                                                FE (NIP) NITH FE (NIP)
                                  103
               30
                      326
                              326
                                         103
3129 c
                                                FE (NIRLPHA) HITH FE (NIRLPHA)
                      326
                              326 107
                                         107
               31
3130 c
                                                NI TOTAL HITH NI TOTAL
                              328
                      328
3131 c
                                                NI ELASTIC HITH NI ELASTIC
3132 €
               33
                      328
                             328
                                    2
                                                NI INELASTIC MITH NI INELASTIC
               34
                     328
                             328
3133 c
                             326 102
3134 c
              35
                     328
                                         2 (12
                                                NI CAPTURE MITH NI CAPTURE
                                                NI (NIP) HITH NI (NIP)
3135 c
               36
                     328
                             328 103
                                         103
               37
                              329
                                                CU TOTAL HITH CU TOTAL
                     329
3136 c
                              329
                                                CU TOTAL HITH CU ELASTIC
3137 c
               38
                     329
3138 c
               39
                      329
                             329
                                                CU ELASTIC HITH CU ELASTIC
3139 c
               40
                     329
                             329
                                    2
                                                CU ELASTIC HITH CU INELASTIC
3140 c
              41
                     329
                             329
                                   4
                                                CU INELASTIC HITH CU INELASTIC
               42
                     329
                             329
                                    4
                                         102
                                                CU INCLASTIC HITH CU CAPTURE
3141 C
                             329
                                                CU INELASTIC MITH CU (NIP)
3142 c
               43
                     329
                                    4
                                         103
3143 c
                     329
                             329
                                         107
                                                CU INELASTIC MITH CU (NIALPHA)
3144 C
               45
                     329
                              329 102
                                         102
                                                CU CAPTURE HITH CU CAPTURE
3145 c
                     329
                             329 103
                                         103
                                                CU (NIP) HITH CU (NIP)
3146 c
               47
                     329
                             329 107
                                         107
                                                CU (NIRLPHA) HITH CU (NIRLPHA)
                                         1
                                   1
3147 c
              48
                     382
                             382
                                                PB TOTAL HITH PB TOTAL
3148 c
               49
                     382
                             382
                                               PB TOTAL HITH PB ELASTIC
PB TOTAL HITH PB CAPTURE
3149 C
              50
                     382
                             382
                                         102
              51
3150 c
                     382
                             382
                                                PB ELASTIC HITH PB ELASTIC
                     382
                             382
                                    2
                                                PB ELASTIC HITH PB INELASTIC
3151 c
               52
3152 c
              53
                     382
                             382
                                    4
                                                FB INCLASTIC HITH PB INCLASTIC
                                                FB INCLASTIC HITH PB CAPTURE
3153 c
              54
                     382
                             382
                                    4
                                         102
                             382 102
              55
3154 c
                     362
                                         102
                                                PR CAPTURE WITH PR CAPTURE
3155 c
                    1301
              56
57
                            1301
                                   1
                                         1
                                                H TOTAL HITH H TOTAL
3156 c
                    1301
                            1301
                                                H TOTAL HITH H ELASTIC
3157 c
              58
                    1301
                            1301
                                               H ELASTIC WITH H ELASTIC
3158 c
3159 c
            MF1=3:MF2=33
3160 c
            MTI=MT-NO FOR SIGNA-1+MT2=MT NO FOR SIGNA-2.
3161 c
3162
            MFA=1
            HTA=451
3163
            MEHIND ND2
3165 c
            READ GROUP STRUCTURE
        10 READ (NDZ:20) (A(I):I=1:7):MAT:MF:MT:NSEE 20 FORMAT (6A10:A6:I4:12:I3:I5)
3166
3167
           IF (MAT.ET.HAT1) OD TO 30
IF (MAT.LT.HAT1) OD TO 10
3168
3169
3170
3171
            MRITE (NOUT:40) HATI:NDT:HAT
3172
            STOP
        30 CONTINUE
3173
3174
        40 FORMAT ( 140)+ SORMY: REBUESTED MAT = 4:4:4 N

1 + LAST MAT BEAD MAS 4:4)

BEAD (NDE:50) C1:C2:L1:L2:L4:MAT:MF:MT:MSEB
                              SOPRIFREDUESTED HAT = 41414 NOT DN TAPE 4131
3175
3176
3177
        50 FORMAT (2611.4.4:11,:4:12:13:15)
           IF (MF.ER.MFA) SO TO 70 MRITE (MOUT+60) NOT+MF+MT
3178
3179
3180
        60 FORMAT (IN : + SORRY: TAPE +13: + SCREWED UP MF=+13: + MT=+14)
3181
           STOP
        70 IF (HT.ER.HTA) 60 TO 80
3182
            MRITE (NOUT:60) NOT:MF:MT
3183
3184
            STOP
        80 CONTINUE
3185
3166
           NGPEL 1
3187
            NBD=L3
            PEAD (ND2+90) (680(1)+1=1+NBD)
3188
        90 FORMAT (6E11.4)
3189
       BEAD XEC FOR MT1 AND MT2
100 BEAD (ND2:20) (A(1):1=1:7):MAT:MF:MT:NSEE
3190 c
3191
           IF (MF.LT.MF1) SD TD 100
IF (MF.EB.MF1) SD TD 110
3192
3193
3194
            MPITE (MOUT+60) NOT+MF+MT
3195
            STOP
       110 CONTINUE
3197
            IF (MT.LT.MT1) 60 TD 100
IF (MT.EB.MT1) 60 TD 120
3198
3199
            MRITE (HOUT: 60) HOT: HF : HT
3200
            STOP
```

```
3201
         120 CONTINUE
              READ (NDE+90) (x51(1)+1=1+NSP)
3202
3203
              IF (HT1.NE.HT2) 60 TO 130
3204
3205
              xs2(1)#xs1(1)
3206
         125 CONTINUE
              GD TD 150
3207
        130 READ (ND2:20) (R(1):I=1:7):HAT:HF:HT:HSES

IF (HT.LT:HT2) GD TD 130

IF (HT.EP:HT2) GD TD 140
3208
3209
3210
              HRITE (NOUT: 60) NOT: ME MT
3211
        140 CONTINUE
3212
3213
              MEAD (ND2,90) (xs2(1),1=1,NGP)
3214
         150 CONTINUE
              DD 155 N=1:NGP
3215
3216
3217
              COM (K+M)=0.
3218
              CEI (KIN) = 0.
              CE2 (KIN) = 0.
3219
3220
        155 CONTINUE
3221 c
             READ COV. DATA.
        READ COD. DATA.

160 MEAD (NDT;20) (A(1):|1:1;7):MAT:MF:MT:MSEC IF (MF.LT.MF2) GD TD 160

1F (MT.ME.MT1) GD TD 160

1F (MF.EB.MF2) GD TD 170
3222
3223
3224
3225
3226
              HRITE (HOUT: 60) NOT: HF: HT
3227
              STOP
        170 CONTINUE
3228
              THEAD (NDT:50) C1:C2:L1:L2:L3:L4:NAT:NF:NT:NSEE

IF (NT.LT:NT1) GD TD 160

IF (NT.EP:NT1) GD TD 180
3229
3230
3231
3535
              MPITE (NOUT: 60) NOT: HF: MT
3233
              STOP
        180 CONTINUE
3234
3235
              MTX=L2
              HGP=L4
3236
3237 c
              13NDV80///FOLLOWING THREE LINES INSERTED AS PER ERROR FOUND BY MUI
              SEE LETTER DATED 13NDV80 AND REFERENCE T-2-L-3845. DD 250 N=1+NGP DD 250 N=1+NGP
3238 c
3239
3240
3241
        250 COM (MIN)=0.
3242
              DO 190 HE !! HEP
3243
              MEAD (NDT:50) C1:C2:L1:L2:L3:L4
3244
              LGP1=L2
3245
              L&P2=L2+L3-1
3246
              NGNDEL4
3247
              KL=L4
3248
              MEND (NDT:90) (COM(KL:L):L=L6P1:L6P2)
3249
              IF (NGND.GE.KEP) 60 TO 200
3250
3251
        190 CONTINUE
        200 IF (MTX.LT.MT2) SD TD 170
IF (MTX.EB.MT2) SD TD 210
MRITE (MDUT:60) MDT:MF:MT
3252
3253
3254
              STOP
3255
3256
3257
        210 CONTINUE
              DD 230 K=1.NGP
              KKENSP-K+1
3258
              XSA (KK) EXSI (K)
3259
              X53 (HK) #X52 (K)
3260
              DD 220 N=1+NGP
3261
              NH=NGP-N+1
3262
              CET (KKINN/ SCON (KIN)
3263
         220 CONTINUE
3264
         230 CONTINUE
             IF (NDM.67.0) METURN
DD 240 H=1:NSP
DD 240 N=1:NSP
3265
3266
3267
3568
              CEE (HIN) =CE1 (HIN) +XSA (H) +XS3 (N)
3269
        240 CONTINUE
3270
              RETURN
3271
3272 c
              EMD
3273 c
3274 c
3275 c
3276 c
3277
              SUBROUTINE SETIE
3278 c
3279 c
              SUBROUTINE SETS CORRECT HAT HAT HE SIVEN MRX
3280 c
```

```
3281
             COMMON/ENDF/MATIMEIMTINDTIJRXIMATIIMFIIMFZIMTIIMTZIMATZIMOUTINDZ
3282 C
3283
             州田 4年3月日
             HF1=3 $ HF2=33 $ HR>HX#6
3264
             1F (MRX.67.6) 60 TO 20
3285
3286
             MAT1=305
             IF (HMA.GT.3) 60 TO 10
HT1=1 $ HT2=1
3287
3288
             IF (MM).EB.2) MT2=2
IF (MM).EB.3) MT2=107
3289
3290
3291
             RETURN
3292
         10 CONTINUE
3293
             HT1=2 $ HT2=2
             IF (MRX.GE.5) MT2=107
IF (MRX.EB.6) MT1=107
3294
3295
             RETURN
3296
3297
          20 CONTINUE
3298
             IF (HRX.6T.11) 60 TD 40
3299
             HAT1=306
             IF (HRX.6T.08) 60 TD 30
HTI=1 $ HT2=1
3300
3301
3302
             IF (MRX.EE.8) MT2=2
3303
             RETURN
3304
         30 CONTINUE
             HT1=2 $ HT2=2
3305
             TI-C D HTC=C

IF (MMX.EB.10) MT1=4

IF (MMX.EB.10) MT2=4

IF (MMX.EB.11) MT1=107

IF (MMX.EB.11) MT2=107
3306
3307
3308
3309
3310
             RETURN
          40 CONTINUE
3311
             IF (MRX.6T.18) 60 TO 70 MAT1=324
3312
3313
             IF (MRE.6T.13) 60 TO 50
3314
             HT1=1 $ HT2=1
3315
             IF (HRX.ES.13) HT2=2
3316
3317
             METURN
3318
          50 CONTINUE
             IF (MRX.67.15) 60 TO 60
3319
             HT1=2 $ HT2=2
3320
             IF (MP. EB. 15) HT2=4
3321
3322
             RETURN
3323
          60 CONTINUE
3324
             HT1=4 S HT2=4
             IF (MM#.GE.17) MT2=102
IF (MM#.EB.18) MT1=102
3325
3326
3327
             BETHEM
3328
          70 CONTINUE
3329
             IF (MRX.67.31) 60 TO 110
3330
             MAT1=326
3331
             IF (MPX.67.21) 60 TO 80
             MT1=1 $ MT2=1
IF (MPA.EB.20) MT2=2
3332
3333
3334
             IF (MP>.EB.21) MT2=102
3335
             RETURN
3336
          80 CONTINUE
3337
            IF (MPF.6T.24) 60 TO 90
3338
             MT1#2 $ MT2#2
             IF (MRx.ED.23) MT2=4
IF (MRX.EB.24) MT2=102
3339
3340
3341
             BETURN
3342
          90 CONTINUE
3343
             IF (MMX.67.28) 60 TO 100 MY1=4 $ MY2=4
3344
3345
             IF (MR. EB.26) HT2=102
              IF (MRX.ED.27) MT2=103
3346
3347
              IF (MPx.EB.28) MT2=107
3348
             BETURN
3349
        100 CONTINUE
3350
             HT1=102 $ HT2=102
             TF (MPX.EW.30) MT1=103

IF (MPX.EW.30) MT2=103

IF (MPX.EW.31) MT2=107

IF (MPX.EW.31) MT1=107
3351
3352
3353
3354
3355
             PETURN
3356
        110 CONTINUE
3357
             IF (MRX.61.36) 60 TO 120
3358
             MAT1=328
             HT1=1 $ HT2=1
3359
             IF (MR#.EB.33) MT1=2
3360
```

```
IF (MRX.EB.33) MT2=2
IF (MRX.EB.34) MT2=4
IF (MRX.EB.35) MT1=102
IF (MRX.EB.35) MT2=102
IF (MRX.EB.36) MT2=103
IF (MRX.EB.36) MT2=103
3361
3362
3363
3364
3365
3366
3367
336B
               RETURN
3369
        120 CONTINUE
              1F (MRX.61.47) 60 TO 160
3370
3371
              HAT1=329
              IF (MMX.67.38) 60 TD 130
3372
3373
               MT1=1 $ MT2=1
3374
               IF (MPX.EB.38) MT2=2
3375
               RETURN
3376
         130 CONTINUE
              IF (MRX.67.40) 60 TO 140 HT1=2 $ MT2=2
3377
3378
3379
               3F (MPX.EB.40) MT2#4
3380
               RETURN
3381
         140 CONTINUE
              IF (MRX.GT.44) 60 TD 150
3382
               HT1=4 $ HT2=4
3383
               IF (MRX.EB.42) MT2=102
IF (MRX.EB.43) MT2=103
IF (MRX.EB.44) MT2=107
3384
3385
3386
3387
               RETURN
3368
        150 CONTINUE
              HT1=102 $ HT2=102
3389
              TIP-102 B MTC=102
IF (MMP.EB.46) MT1=103
IF (MMP.EB.47) MT2=103
IF (MMP.EB.47) MT2=107
IF (MMR.EB.47) MT2=107
3390
3391
3392
3393
3394
               RETURN
        160 CONTINUE
IF (MRX.6T.55) 60 TO 190
3395
3396
3397
               HAT1=382
3398
               1F (MFX.67.50) 60 TD 170
3399
               HT1=1 $ HT2=1
               IF (MRA.ER.49) MT2=2
IF (MRA.ER.50) MT2=102
3400
3401
3402
               RETURN
3403
        170 CONTINUE
               IF (HR).67.52) 60 TO 180
HT1=2 $ HT2=2
3404
3405
               IF (MRX.EB.52) MT2=4
3406
3407
               BF TI She
3408
        180 CONTINUE
3409
              HT1=4 $ HT2=4
               IF (MRX.GE.54) MT2=102
IF (MRX.EB.55) MT1=102
3410
3411
3412
               RETURN
        190 CONTINUE
              IF (MRX.67.58) 60 TO 200 MAT1=1301
3414
3415
               HT1=1 S HT2=1
IF (MR*.6E.57) HT2=2
IF (MR*.EB.58) HT1=2
3416
3417
341B
3419
               RETURN
3420
         200 CONTINUE
3421
               IF (MMX.6T.MMXMX) MRITE (NGUT:510) MMX:MMXMX
         510 FORMAT (IN 14 MEXER1314 GREATER THAN MEXMX**13)
3422
               STOP
3423
3424
               END
```

APPENDIX B

TRDSEN

This appendix was provided by T. J. Seed and is a summary of the changes made in TRIDENT-CTR in order to obtain angular fluxes compatible with SENSIT-2D. In order to make a distinction between this version of TRIDENT-CTR and the normal version, it was renamed TRDSEN.

First UPDATE

```
#ID SENSIT
                          #1 SEEKTUD.2
                         COMMON SENST/ FRSEN(28), 1HOLTH(23)
C SENSIT
                          #D CD2.4
C SENSIT
                        2LTOH, IPXS.LTC. IPCT.LTCT.LTXS. IPFSM, IPFSMA,LTFS, IPSEN,LTSEN C SENSIT
                          #1 TRIDBD.26
C SENSIT
                                                 DATA FNSEN/6HSNSTB1,6HSNSTB2,6HSNSTB3,6HSNSTB4,6HSNSTB5,6HSNSTB6,
1 6HSNSTB7,6HSNSTB8,6HSNSTB9,6HSNST18,6HSNST11,6HSNST17,6HSNST13,
2 6HSNST14,6HSNST15,6HSNST16,6HSNST17,6HSNST18,6HSNS119,6HSNST28 /
#I INPUT11.84
                          C SENSIT
                                                   EQUIVALENCE (IA(164), LSEN)
                       EQUIVALENCE (IA(164

C SENSIT

#1- IMPUTI1.238

C SENSIT

IHOLTH(1) = 4HTRID

IHOLTH(2) = 4H-SEN

IHOLTH(4) = 4HLINK

IHOLTH(5) = 4H

C SENSIT

#1 IMPUTI1.242
                        #1 INPUTII.242
C SENSIT
                        IF(K.NE.1) GO TO 158

DO 155 1 = 1, 18

IMOLTH(1+5) = IDUSE(I)

155 CONTINUE

158 CONTINUE
                       C SENSIT
                      C SENSIT

C SENSIT

LTLM - LSEN + 3 = NM * ITMRX

C SENSIT
                       D INPUTIL.817
                                                 LTSEN = 3 * NTC * ITH

IPSEN = IPFSMA + NGFSB * LTFS

LASTEC = IPSEN + LTSEN + 512

IF(ITH.EQ.8) IPSEN = IPP1
                      C SENSIT #D INPUTII.913
C SENSIT THIS !
 49
5015234555789961233456789812334567898
                       528 FORMAT(78H
1ROCESSOR DN
                                                                                                                    THIS CASE WAS PROCESSED BY THE TRIDENT-CTR SENSIT P
                       C SENSIT
                      ## INPUTIL 1824
C SENSIT
758 FORMAT(//IX,37HTRIDENT-CTR SENSIT PROCESSOR, DATE -
                      C SENSIT
                        #I GEDCON.14
                      *I BEDUCT:...
C SENSIT
EQUIVALENCE (IA(1),ITH)
                     C SENSIT #1 GEOCON.59
C SENSIT | F(ITH.EQ.6) RETURN
                    | IF (!TH.EQ.8) RETURN
| DO 128 J = 1, JT
| CALL LREED(ACLIP).A(LIPG).PI.J.1,3,IPPI.JT)
| ITHAX = IT(J)
| DO 118 I = 1, IMAX
| VI = PI(1,1) + PI(2,1) + PI(3,1)
| DO 118 K = 1, 3
| PI(K,1) = PI(K,1) / VI
| IIB | CONTINUE
| CALL RITE(A(LIP).A(LIPG).PI.J.1,3,IPSEN.JT)
| 120 | CONTINUE
| C SENSIT | SO DO GRIND28.52 GRIND28.73
| C SENSIT | SO SESSIT | SO SE
                    *CALL INSTAL
```

```
*CALL SEEKTUD
C SENSIT
*1 DUTER.23
   R3
               DIMENSION JPARM(18), ESEN(5)
C SENSIT
   84
B5
   86
87
              #1 DUTER.35
C SENSIT
               EQUIVALENCE (IA(63), NTC), (IA(165), MSNST), (IA(166), JSEM)
C SENSIT
   88
   98
                #1 OUTER.51
C SENSIT
   92
93
94
               DATA ESEN/6HTDD MA.6HNY SEN.6HSIT DU.6HMP FIL,6HES C SENSIT
   95
                *D OUTER.68, OUTER.78
C SENSIT
 96
97
98
99
100
                              SIT

IDOLD • 8

MLDS = MTC * MMPD

MGSD = MAXDMP / MLDS

IF (MGSD.LT.1) MGSD = 1

NUDS = NGSD * MLDS + 33 + 512

NSDK = (IGM - 1) / NGSD + 1

IF (MSDK.GT.28) CALL ERROR(1,ESEN.5)

MGLD = IGM - (NDSK-1) * MGSD

NUDLD • MGLD * MLDS + 33 + 512
 162
163
184
185
186
              C
                               JPARM(1) = 1TH
JPARM(2) = 1GM
JPARM(3) = JT
JPARM(4) = MTC
 188
 189
 111
                                JPARM(5) - MNPQ
JPARM(6) - NSDK
 iiż
                               JPARM(7) - NGSD
JPARM(8) - MLDS
 113
 114
115
             JPARM(B) = MLDS
C SEMSIT

#1 DUTER.181
C SENSIT

IDSDK = (G - 1) / MGSD + 1
IF (IDSDK.E0.IDOLD) GO TO 138
IF (IDSDK.E0.I) GO TO 137
CALL FILLU(1.FMSEM(IDSDK-1).FMSEM(IDSDK-1).MLDS1)
CALL SELK(FMSEM(IDSDK-1).JVERS,MSMST,4)
CALL SELK(FMSEM(IDSDK-1).JVERS,MSMST,4)
CONTINUE
CONTINUE
 116
117
118
119
120
121
122
 123
124
125
                               CONTINUE
NUDSI - NUDS
                137
                             NUDSI - MLDS
IF(IDSDK.EQ.MSDK) NLDSI - NLDLD
IF(IDSDK.EQ.MSDK) NLDSI - NLDLD
IVERS - IDSDK
JPARM(0) - NLDSI
JPARM(0) - IDSDK
EALL FILLU(1,FMSEN(IDSDK),FMSEN(IDSDK),MLDSI)
CALL FILLU(2,FMSEN(IDSDK),FMSEN(IDSDK),B)
CALL SEEK(FMSEN(IDSDK),IVERS,MSMST,1)
JSEN - 6
CALL SRITE(MSMST,IHDLTH,8,8,23,1,JSEN)
CALL SRITE(MSMST,IHDLTH,8,8,23,1,JSEN)
CONTINUE
SIT
126
127
128
129
138
131
132
133
134
135
 136
137
              138 CO
              *D OUTER.303, OUTER.321
C SENSIT
 138
 139
148
141
142
143
144
              *D OUTER.324,OUTER.334
C SENSIT
*D OUTER.337,OUTER.379
              C SENSIT
145
146
                #D INNER.B1
147
148
149
158
151
             DENSIT

DINNER.94

C SENSIT

DINNER.97, INNER.115

C SENSIT
             C SENSIT

JFS = 1
C SENSIT

D INNER.201.INNER.287
C SENSIT

TYANK NEURB, ABSORB
151
152
153
154
155
156
157
             #THNK NEURB, ABSORB
#1 SUEEP, 32
C SEMSIT
EDUIVALENCE (1A(164), LSEM)
C SENSIT
 158
 159
168
161
              D SLEEP.90
C SENSIT
              C SENSIT

C SENSIT

C SENSIT

C SENSIT
163
164
166
167
                               CALL WRSHST(AF(1,2), RS, A(LSEN), IT)
                E BENSIT
```

```
169 *D SLEEP.249, SLEEP.254

178 C SENSIT

171 *I SLEEP.259

SUBROUTINE LESST(AF, CF, SEN, IT)

173 C

174 C VOLUME AVERAGES ANGULAR FLUXES AND LETTES TO SEQUENTIAL

175 C FILE

176 C

177 **CALL BIAR

179 **CALL CD2

180 C

181 DIMENSION AF(3,1), SEN(3,1), CF(1)

182 C

183 EQUIVALENCE (IA(165), NSNST), (IA(166), JSEN)

184 C

185 DO 18 I = 1, IT

186 CF(1) = 8.8

187 DO 18 K = 1, 3

188 CF(1) = CF(1) + AF(K,1) ** SEN(K,1)

189 C

191 CALL SRITE(NSNST, CF, IT, 8, 8, 2, JSEN)

192 C

RETURN

END

194 END

195 **C TRDCTR.SETBC1
```

Second UPDATE

```
1 PID SEN1
2 PR READDP.80
3 PI READDP.80
4 NLCM = 0
5 PI INNEW.55
6 C SENSIT
7 EDUIVALENCE (IR(164)**LSEN)
8 C SENSIT
9 PI INNEW.131
10 C SENSIT
11 CALL LREED(R(LIP)**R(LIPG)**R(LSEN)**J*,1*3**IPSEN**JT)
12 C SENSIT
13 PD INNEW.144
14 C SENSIT
15 PI INNEW.167
16 C SENSIT
17 CALL LREED(R(LIP)**R(LIPG)**R(LSEN)**J*,1*3**IPSEN**JT)
18 C SENSIT
19 PD INNEW.180
20 C SENSIT
21 PD SMEEP.269
22 PC TPDSEN.SETDCI
```

The state of the s

সাল বিশ্ব বিভাগের ক্রিয়ার প্রত্যালয় করিছে কর্মান ক্রিয়ার ক্রিয়ার ক্রিয়ার ক্রিয়ার করিছে করিছে করিছে ক্রিয সংগ্রাহার বিশ্ব বিভাগের ক্রিয়ার ক্রিয়ার ক্রিয়ার ক্রিয়ার ক্রিয়ার ক্রিয়ার ক্রিয়ার ক্রিয়ার ক্রিয়ার ক্রিয

The second of the second secon

A AND THE RESIDENCE THE RESIDE

The second secon

And the second s

Andrew Colonia (1965) (

Market de rescui de la companya del la companya de la companya de

Printed in the United States of America
Available from

National Technical Information Service
US Department of Commerce
5785 Port Royal Road
33 April 27 Springfield, VA 22161

Microfiche \$3.50 (A01)

Domestic NTIS NTIS Domestic Domestic NTIS Domestic NTIS Price Page Range Price Page Range Price Code Price Code Page Range Price Price Code Page Range Price Price Code 001-025 026-050 051-075 15]-175 176-200 201-225 A08 A09 A10 A11 \$,5,00 6,00 \$1(.00 301-325 \$17,00 A14 451-475 \$23.00 A20 326-3<u>\$0</u> 351-375 A03 18.00 19.00 20,00 12.00 13.00 A15 476-500 24.00 A21 7.00 A04 A16 501-525 25.00 A 22 226-250 076-100 8.00 AOS 14.00 376-400 A17 526-550 26.00 A 23 A06 9.00 251-275 A12 401-425 21.00 15.00 551-575 A18 27.00 A24 126-130 10.00 276-300 16.00 22.00 426-450 A19 576-600 28.00 A2,5 601-up